129
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Telomeric Expression Sites Are Highly Conserved in Trypanosoma brucei

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs) of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes ( ESAGs). The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes ( VSGs) were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          The genome of the African trypanosome Trypanosoma brucei.

          African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference

            PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at .
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers.

              Blood stream forms (BSF) of Trypanosoma brucei brucei GUT at 3.1 were propagated in vitro in the absence of feeder layer cells at 37 C, using a modified Iscove's medium (HMI-18). The medium was supplemented with 0.05 mM bathocuproine sulfonate, 1.5 mM L-cysteine, 1 mM hypoxanthine, 0.2 mM 2-mercaptoethanol, 1 mM sodium pyruvate. 0.16 mM thymidine, and 20% (v/v) Serum Plus (SP) (Hazleton Biologics, Lenexa, Kansas). The latter contained a low level of serum proteins (13 micrograms/ml). Each primary culture was initiated by placing 3.5-4 x 10(6) BSFs isolated from infected mice in a flask containing 5 ml of the medium (HMI-9) supplemented with 10% fetal bovine serum (FBS) and 10% SP. The cultures were maintained by replacing the medium every 24 hr for 5-7 days. During this period, many BSFs died. However, from day 4 onward, long slender BSFs increased in number. On days 5-7, trypanosome suspensions were pooled and cell debris was removed by means of diethylaminoethyl cellulose (DE52) column chromatography. Blood stream forms then were collected by centrifugation, resuspended in fresh medium at 7-9 x 10(5)/ml, and transferred to new flasks. Subcultures were maintained by readjusting the BSF density to 7-9 x 10(5)/ml every 24 hr. Concentrations of FBS were reduced gradually at 5-7-day intervals by alternating the amounts of FBS and SP in HMI-9 with 5% FBS and 15% SP, with 2% FBS and 18% SP, and finally with 20% SP (HMI-18). By this method, 2-3 x 10(6) VSFs/ml were obtained consistently every 24 hr. for more than 80 days.(ABSTRACT TRUNCATED AT 250 WORDS)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                27 October 2008
                : 3
                : 10
                : e3527
                Affiliations
                [1 ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
                [2 ]The Rockefeller University, New York, New York, United States of America
                [3 ]Institute of Genetics, The University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
                [4 ]Department of Statistics, University of Oxford, Oxford, United Kingdom
                [5 ]The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
                [6 ]Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
                University of Liverpool, United Kingdom
                Author notes

                Conceived and designed the experiments: CHF LMF MQ MB APJ GC GR JDB EJL MB. Performed the experiments: CHF LMF MQ MB APJ NB KB CC SF IG PH MK KM DH HH MS DS KS SS DW BW RY. Analyzed the data: CHF LMF MB APJ KB CC KM HH MS JET RY GC GR JDB EJL MB. Contributed reagents/materials/analysis tools: CHF LMF MQ MB APJ JET RY GR EJL MB. Wrote the paper: CHF LMF MB APJ GC GR JDB EJL.

                [¤]

                Current address: School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom

                Article
                08-PONE-RA-06075
                10.1371/journal.pone.0003527
                2567434
                18953401
                3fff02d5-d243-4424-812f-8bfea50bbe32
                Hertz-Fowler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 August 2008
                : 23 September 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Genetics and Genomics/Chromosome Biology
                Genetics and Genomics/Comparative Genomics
                Infectious Diseases/Protozoal Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article