22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dengue fever (DF) is endemic in Medellín, the second largest Colombian city, and surrounding municipalities. We used DF case and satellite environmental data to investigate conditions associated with suitable areas for DF occurrence in 2008 in three municipalities (Bello, Medellín and Itagüí). We develop spatially stratified tests of ecological niche models, and found generally good predictive ability, with all model tests yielding results significantly better than random expectations. We concluded that Bello and Medellín present ecological conditions somewhat different from, and more suitable for DF than, those of Itagüí. We suggest that areas predicted by our models as suitable for DF could be considered as at-risk, and could be used to guide campaigns for DF prevention in these municipalities.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Potential effect of population and climate changes on global distribution of dengue fever: an empirical model.

          Existing theoretical models of the potential effects of climate change on vector-borne diseases do not account for social factors such as population increase, or interactions between climate variables. Our aim was to investigate the potential effects of global climate change on human health, and in particular, on the transmission of vector-borne diseases. We modelled the reported global distribution of dengue fever on the basis of vapour pressure, which is a measure of humidity. We assessed changes in the geographical limits of dengue fever transmission, and in the number of people at risk of dengue by incorporating future climate change and human population projections into our model. We showed that the current geographical limits of dengue fever transmission can be modelled with 89% accuracy on the basis of long-term average vapour pressure. In 1990, almost 30% of the world population, 1.5 billion people, lived in regions where the estimated risk of dengue transmission was greater than 50%. With population and climate change projections for 2085, we estimate that about 5-6 billion people (50-60% of the projected global population) would be at risk of dengue transmission, compared with 3.5 billion people, or 35% of the population, if climate change did not happen. We conclude that climate change is likely to increase the area of land with a climate suitable for dengue fever transmission, and that if no other contributing factors were to change, a large proportion of the human population would then be put at risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spatial epidemiology: an emerging (or re-emerging) discipline.

            Spatial epidemiology is the study of spatial variation in disease risk or incidence. Several ecological processes can result in strong spatial patterns of such risk or incidence: for example, pathogen dispersal might be highly localized, vectors or reservoirs for pathogens might be spatially restricted, or susceptible hosts might be clumped. Here, we briefly describe approaches to spatial epidemiology that are spatially implicit, such as metapopulation models of disease transmission, and then focus on research in spatial epidemiology that is spatially explicit, such as the creation of risk maps for particular geographical areas. Although the spatial dynamics of infectious diseases are the subject of intensive study, the impacts of landscape structure on epidemiological processes have so far been neglected. The few studies that demonstrate how landscape composition (types of elements) and configuration (spatial positions of those elements) influence disease risk or incidence suggest that a true integration of landscape ecology with epidemiology will be fruitful.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru.

              We determine the spatial pattern of Aedes aegypti and the containers in which they develop in two neighborhoods of the Amazonian city of Iquitos, Peru. Four variables were examined: adult Ae. aegypti, pupae, containers positive for larvae or pupae, and all water-holding containers. Adults clustered strongly within houses and weakly to a distance of 30 meters beyond the household; clustering was not detected beyond 10 meters for positive containers or pupae. Over short periods of time restricted flight range and frequent blood-feeding behavior of Ae. aegypti appear to be underlying factors in the clustering patterns of human dengue infections. Permanent, consistently infested containers (key premises) were not major producers of Ae. aegypti, indicating that larvaciding strategies by themselves may be less effective than reduction of mosquito development sites by source reduction and education campaigns. We conclude that entomologic risk of human dengue infection should be assessed at the household level at frequent time intervals.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                101238455
                International Journal of Environmental Research and Public Health
                Molecular Diversity Preservation International (MDPI)
                1661-7827
                1660-4601
                December 2009
                2 December 2009
                : 6
                : 12
                : 3040-3055
                Affiliations
                [1 ] Grupo de Biología y Control de Enfermedades Infecciosas (BCEI), Instituto de Biología, Universidad de Antioquia, Sede de Investigaciones Universitarias, SIU, Calle 62 # 52–59 Laboratory 620, P.O. Box: 1226, Medellín, Colombia; E-Mails: sairorieta@ 123456yahoo.es (S.A.); nicolas.jaramillo@ 123456siu.udea.edu.co (N.J-O.)
                [2 ] Natural History Museum, the University of Kansas, Lawrence, KS 66045, USA
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: town@ 123456ku.edu ; Tel.: +1-785-864-3926; Fax: +1-785-864-5335.
                Article
                ijerph-06-03040
                10.3390/ijerph6123040
                2800332
                20049244
                4009dce6-70ec-42dc-a13a-ced98f7547ff
                © 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 21 September 2009
                : 18 November 2009
                Categories
                Article

                Public health
                remote sensing,geographic information systems,ecological niche modeling,dengue fever

                Comments

                Comment on this article

                scite_

                Similar content127

                Cited by16

                Most referenced authors293