32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Profiling ribonucleotide and deoxyribonucleotide pools perturbed by gemcitabine in human non-small cell lung cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated the dosage effect of gemcitabine, an inhibitor of ribonucleotide reductase (RR), on cellular levels of ribonucleotides and deoxyribonucleotides using high performance liquid chromatography-electrospray ionization tandem mass spectrometric method. As anticipated, after 4-h incubation of non-small cell lung cancer (A549) cells with gemcitabine at 0.5 and 2 μM, there were consistent reductions in levels of deoxyribonucleoside diphosphates (dNDP) and their corresponding deoxyribonucleoside triphosphates (dNTP). However, after 24-h exposure to 0.5 μM gemcitabine, the amounts of dNTP were increased by about 3 fold, whereas cells after 24-h 2 μM gemcitabine treatment exhibited deoxycytidine diphosphate (dCDP), deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) levels less than 50% of control values, with deoxycytidine triphosphate (dCTP) and deoxyguanosine triphosphate (dGTP) returning to the control level. Using cell cycle analysis, we found that 24-h incubation at 0.5 μM gemcitabine resulted in a significant increase in S phase arrest, while 2 μM treatment increased G0/G1 population. Our data demonstrated the correlation between the level of RR and the increased levels of dNTPs in the group of 0.5 μM treatment for 24-h with a markedly reduced level of dFdCTP. Accordingly, we proposed that the dosage of dFdC could determine the arrested phase of cell cycle, in turn affecting the recovery of dNTPs pools.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cell cycle regulation of DNA replication.

          Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of prereplication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular elimination of 2',2'-difluorodeoxycytidine 5'-triphosphate: a mechanism of self-potentiation.

            2',2'-Difluorodeoxycytidine (dFdC, Gemcitabine) is a deoxycytidine analogue which, after phosphorylation to the 5'-di- and 5'-triphosphate (dFdCTP), induces inhibition of DNA synthesis and cell death. We examined the values for elimination kinetics of cellular dFdCTP and found they were dependent on cellular concentration after incubation of CCRF-CEM cells with dFdC and washing into drug-free medium. When the drug was washed out at low cellular dFdCTP levels (less than 50 microM), dFdCTP elimination was linear (t1/2 = 3.3 h), but it became biphasic at intracellular dFdCTP levels greater than 100 microM. Although the initial elimination rate was similar at all concentrations, at higher concentrations the terminal elimination rate increased with increasing cellular dFdCTP concentration, with a nearly complete inhibition of dFdCTP elimination at 300 microM. The deamination product 2',2'-difluorodeoxyuridine was the predominant extracellular catabolite at low cellular dFdCTP concentrations, whereas at high dFdCTP concentrations dFdC was the major excretion product. The dCMP deaminase inhibitor 3,4,5,6-tetrahydrodeoxyuridine transformed the monophasic dFdCTP degradation seen at low dFdCTP levels into a biphasic process, whereas the deoxycytidine deaminase inhibitor 3,4,5,6-tetrahydrouridine had no effect on dFdCTP elimination. An in situ assay indicated that dCMP deaminase activity was inhibited in whole cells, an action that was associated with a decreased dCTP:dTTP value. In addition, dFdCTP inhibited partially purified dCMP deaminase with a 50% inhibitory concentration of 0.46 mM. We conclude that dFdC-induced inhibition of dCMP deaminase resulted in a decrease of dFdCTP catabolism, contributing to the concentration-dependent elimination kinetics. This action constitutes a self-potentiation of dFdC activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2',2'-difluorodeoxycytidine.

              The new deoxycytidine analogue 2',2'-difluorodeoxycytidine (dFdC) is a specific inhibitor of DNA synthesis that has marked cytotoxicity and therapeutic activity. A 2-hr incubation with 0.1-10 microM dFdC decreased cellular viability 78-97%. This treatment reduced deoxynucleoside triphosphate pools, similar to the action of the ribonucleotide reductase inhibitor hydroxyurea. The most pronounced decrease occurred in the dCTP pool, quantitatively followed by the decrease of dATP, dGTP, and dTTP. In contrast, inhibition of DNA synthesis by arabinosylcytosine did not affect the dCTP level, whereas dATP, dGTP, and dTTP pools increased, but less than 2-fold. The incorporation of [5-3H]cytidine into the dCTP pool, a measure of ribonucleotide reductase activity in whole cells, was reduced to 3% of controls by 0.1 microM dFdC, but to only 40% by 0.1 microM ara-C. Each drug decreased incorporation of [5-3H]cytidine into DNA to a similar extent (greater than 94%), suggesting limitation by a reaction proximal to this step. The cellular concentration of dFdC 5'-diphosphate was 0.3 microM at 50% inhibition of the in situ activity of ribonucleotide reductase. Direct assays of partially purified ribonucleoside diphosphate reductase (EC 1.17.4.1) demonstrated 50% inhibition by 4 microM dFdC 5'-diphosphate; dFdC 5'-triphosphate was much less inhibitory. We conclude that dFdC 5'-diphosphate acts as an inhibitor of ribonucleoside diphosphate reductase.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 November 2016
                2016
                : 6
                : 37250
                Affiliations
                [1 ]State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology , Taipa, Macau, China
                [2 ]Institute of Molecular Medicine; College of Medicine; National Taiwan University , Taipei, Taiwan (R.O.C.)
                Author notes
                Article
                srep37250
                10.1038/srep37250
                5109029
                27845436
                400a7fb4-8181-4196-93b1-fe6051e43ce4
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 July 2016
                : 26 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article