158
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Geographic Distribution of Staphylococcus aureus Causing Invasive Infections in Europe: A Molecular-Epidemiological Analysis

      research-article
      1 , 2 , * , 3 , 1 , 3 , 4 , 5 , the European Staphylococcal Reference Laboratory Working Group
      PLoS Medicine
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hajo Grundmann and colleagues describe the development of a new interactive mapping tool for analyzing the spatial distribution of invasive Staphylococcus aureus clones.

          Abstract

          Background

          Staphylococcus aureus is one of the most important human pathogens and methicillin-resistant variants (MRSAs) are a major cause of hospital and community-acquired infection. We aimed to map the geographic distribution of the dominant clones that cause invasive infections in Europe.

          Methods and Findings

          In each country, staphylococcal reference laboratories secured the participation of a sufficient number of hospital laboratories to achieve national geo-demographic representation. Participating laboratories collected successive methicillin-susceptible (MSSA) and MRSA isolates from patients with invasive S. aureus infection using an agreed protocol. All isolates were sent to the respective national reference laboratories and characterised by quality-controlled sequence typing of the variable region of the staphylococcal spa gene ( spa typing), and data were uploaded to a central database. Relevant genetic and phenotypic information was assembled for interactive interrogation by a purpose-built Web-based mapping application. Between September 2006 and February 2007, 357 laboratories serving 450 hospitals in 26 countries collected 2,890 MSSA and MRSA isolates from patients with invasive S. aureus infection. A wide geographical distribution of spa types was found with some prevalent in all European countries. MSSA were more diverse than MRSA. Genetic diversity of MRSA differed considerably between countries with dominant MRSA spa types forming distinctive geographical clusters. We provide evidence that a network approach consisting of decentralised typing and visualisation of aggregated data using an interactive mapping tool can provide important information on the dynamics of MRSA populations such as early signalling of emerging strains, cross border spread, and importation by travel.

          Conclusions

          In contrast to MSSA, MRSA spa types have a predominantly regional distribution in Europe. This finding is indicative of the selection and spread of a limited number of clones within health care networks, suggesting that control efforts aimed at interrupting the spread within and between health care institutions may not only be feasible but ultimately successful and should therefore be strongly encouraged.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          The bacterium Staphylococcus aureus lives on the skin and in the nose of about a third of healthy people. Although S. aureus usually coexists peacefully with its human carriers, it is also an important disease-causing organism or pathogen. If it enters the body through a cut or during a surgical procedure, S. aureus can cause minor infections such as pimples and boils or more serious, life-threatening infections such as blood poisoning and pneumonia. Minor S. aureus infections can be treated without antibiotics—by draining a boil, for example. Invasive infections are usually treated with antibiotics. Unfortunately, many of the S. aureus clones (groups of bacteria that are all genetically related and descended from a single, common ancestor) that are now circulating are resistant to methicillin and several other antibiotics. Invasive methicillin-resistant S. aureus (MRSA) infections are a particular problem in hospitals and other health care facilities (so-called hospital-acquired MRSA infections), but they can also occur in otherwise healthy people who have not been admitted to a hospital (community-acquired MRSA infections).

          Why Was This Study Done?

          The severity and outcome of an S. aureus infection in an individual depends in part on the ability of the bacterial clone with which the individual is infected to cause disease—the clone's “virulence.” Public-health officials and infectious disease experts would like to know the geographic distribution of the virulent S. aureus clones that cause invasive infections, because this information should help them understand how these pathogens spread and thus how to control them. Different clones of S. aureus can be distinguished by “molecular typing,” the determination of clone-specific sequences of nucleotides in variable regions of the bacterial genome (the bacterium's blueprint; genomes consist of DNA, long chains of nucleotides). In this study, the researchers use molecular typing to map the geographic distribution of MRSA and methicillin-sensitive S. aureus (MSSA) clones causing invasive infections in Europe; a MRSA clone emerges when an MSSA clone acquires antibiotic resistance from another type of bacteria so it is useful to understand the geographic distribution of both MRSA and MSSA.

          What Did the Researchers Do and Find?

          Between September 2006 and February 2007, 357 laboratories serving 450 hospitals in 26 European countries collected almost 3,000 MRSA and MSSA isolates from patients with invasive S. aureus infections. The isolates were sent to the relevant national staphylococcal reference laboratory (SRL) where they were characterized by quality-controlled sequence typing of the variable region of a staphylococcal gene called spa ( spa typing). The spa typing data were entered into a central database and then analyzed by a public, purpose-built Web-based mapping tool (SRL-Maps), which provides interactive access and easy-to-understand illustrations of the geographical distribution of S. aureus clones. Using this mapping tool, the researchers found that there was a wide geographical distribution of spa types across Europe with some types being common in all European countries. MSSA isolates were more diverse than MRSA isolates and the genetic diversity (variability) of MRSA differed considerably between countries. Most importantly, major MRSA spa types occurred in distinct geographical clusters.

          What Do These Findings Mean?

          These findings provide the first representative snapshot of the genetic population structure of S. aureus across Europe. Because the researchers used spa typing, which analyzes only a small region of one gene, and characterized only 3,000 isolates, analysis of other parts of the S. aureus genome in more isolates is now needed to build a complete portrait of the geographical abundance of the S. aureus clones that cause invasive infections in Europe. However, the finding that MRSA spa types occur mainly in geographical clusters has important implications for the control of MRSA, because it indicates that a limited number of clones are spreading within health care networks, which means that MRSA is mainly spread by patients who are repeatedly admitted to different hospitals. Control efforts aimed at interrupting this spread within and between health care institutions may be feasible and ultimately successful, suggest the researchers, and should be strongly encouraged. In addition, this study shows how, by sharing typing results on a Web-based platform, an international surveillance network can provide clinicians and infection control teams with crucial information about the dynamics of pathogens such as S. aureus, including early warnings about emerging virulent clones.

          Additional Information

          Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000215.

          • This study is further discussed in a PLoS Medicine Perspective by Franklin D. Lowy

          • The UK Health Protection Agency provides information about Staphylococcus aureus

          • The UK National Health Service Choices Web site has pages on staphylococcal infections and on MRSA

          • The US National Institute of Allergy and Infectious Disease has information about MRSA

          • The US Centers for Disease Control and Infection provides information about MRSA for the public and professionals

          • MedlinePlus provides links to further resources on staphylococcal infections and on MRSA (in English and Spanish)

          • SRL-Maps can be freely accessed

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA).

          Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-acquired infections that are becoming increasingly difficult to combat because of emerging resistance to all current antibiotic classes. The evolutionary origins of MRSA are poorly understood, no rational nomenclature exists, and there is no consensus on the number of major MRSA clones or the relatedness of clones described from different countries. We resolve all of these issues and provide a more thorough and precise analysis of the evolution of MRSA clones than has previously been possible. Using multilocus sequence typing and an algorithm, BURST, we analyzed an international collection of 912 MRSA and methicillin-susceptible S. aureus (MSSA) isolates. We identified 11 major MRSA clones within five groups of related genotypes. The putative ancestral genotype of each group and the most parsimonious patterns of descent of isolates from each ancestor were inferred by using BURST, which, together with analysis of the methicillin resistance genes, established the likely evolutionary origins of each major MRSA clone, the genotype of the original MRSA clone and its MSSA progenitor, and the extent of acquisition and horizontal movement of the methicillin resistance genes. Major MRSA clones have arisen repeatedly from successful epidemic MSSA strains, and isolates with decreased susceptibility to vancomycin, the antibiotic of last resort, are arising from some of these major MRSA clones, highlighting a depressing progression of increasing drug resistance within a small number of ecologically successful S. aureus genotypes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How clonal is Staphylococcus aureus?

            Staphylococcus aureus is an important human pathogen and represents a growing public health burden owing to the emergence and spread of antibiotic-resistant clones, particularly within the hospital environment. Despite this, basic questions about the evolution and population biology of the species, particularly with regard to the extent and impact of homologous recombination, remain unanswered. We address these issues through an analysis of sequence data obtained from the characterization by multilocus sequence typing (MLST) of 334 isolates of S. aureus, recovered from a well-defined population, over a limited time span. We find no significant differences in the distribution of multilocus genotypes between strains isolated from carriers and those from patients with invasive disease; there is, therefore, no evidence from MLST data, which index variation within the stable "core" genome, for the existence of hypervirulent clones of this pathogen. Examination of the sequence changes at MLST loci during clonal diversification shows that point mutations give rise to new alleles at least 15-fold more frequently than does recombination. This contrasts with the naturally transformable species Neisseria meningitidis and Streptococcus pneumoniae, in which alleles change between 5- and 10-fold more frequently by recombination than by mutation. However, phylogenetic analysis suggests that homologous recombination does contribute toward the evolution of this species over the long term. Finally, we note a striking excess of nonsynonymous substitutions in comparisons between isolates belonging to the same clonal complex compared to isolates belonging to different clonal complexes, suggesting that the removal of deleterious mutations by purifying selection may be relatively slow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms.

              We describe here a method for determining confidence intervals for a commonly used index of diversity. This approach facilitates the comparison of the genetic population structure of microorganisms isolated from different environments and improves the objective assessment of the discriminatory power of typing techniques.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                January 2010
                January 2010
                12 January 2010
                : 7
                : 1
                : e1000215
                Affiliations
                [1 ]National Institute for Public Health and the Environment, Bilthoven, The Netherlands
                [2 ]Department of Medical Microbiology, University Medical Centre, Groningen, The Netherlands
                [3 ]Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
                [4 ]Department of Periodontology, University Hospital Münster, Germany
                [5 ]Institute of Hygiene, University Hospital Münster, Germany
                University of California San Francisco and San Francisco General Hospital, United States of America
                Author notes

                ICMJE criteria for authorship read and met: HG DMA CCvdW BGS DH AWF. Agree with the manuscript's results and conclusions: HG DMA CCvdW BGS DH AWF. Designed the experiments/the study: HG DH. Analyzed the data: HG CCvdW BGS AWF. Collected data/did experiments for the study: HG. Wrote the first draft of the paper: HG. Contributed to the writing of the paper: HG CCvdW BGS DH AWF. Developed the public domain Web-based interactive mapping tool: DMA. Carried out spatial scan statistics: CCvdW. Provided scientific advice, co-developed mapping tools, co-edited manuscript: BGS. Developed the SpaTyper software, co-organised the capacity building workshops, maintained and serviced the SpaServer: DH. Maintained the SeqNet.org database, co-organised the capacity building workshops, responsible for proficiency testing, performed BURP-clustering: AWF.

                ¶ Membership of the European Staphylococcal Reference Laboratory Working Group is provided in the Acknowledgments.

                Article
                09-PLME-RA-1874R2
                10.1371/journal.pmed.1000215
                2796391
                20084094
                400f27cf-eb96-48c5-a638-5ebef0976ae7
                Grundmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 July 2009
                : 4 December 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Public Health and Epidemiology/Infectious Diseases
                Public Health and Epidemiology/Nosocomial and Healthcare-Associated Infections

                Medicine
                Medicine

                Comments

                Comment on this article