0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Percutaneous Drainage Surgery and the Interval to Perform Laparoscopic Cholecystectomy on Acute Cholecystitis through Genetic Algorithm-Based Contrast-Enhanced Ultrasound Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To discuss the optimal interval time between genetic algorithm-based ultrasound imaging-guided percutaneous drainage surgery (PTGD) and laparoscopic cholecystectomy (LC), 64 cholecystitis patients were selected as the research objects and evenly divided into experimental group (intelligent algorithm was adopted to recognize patients' ultrasonic images) and control group (professional doctors carried out diagnosis). 92 acute cholecystitis patients undergoing PTGD were divided into three groups. 30 out of the 92 patients received LC within 2 months and were defined as the early group. 32 were performed with LC within 2 to 4 months and were defined as the metaphase group. 28 underwent LC over 4 months and were defined as the late-stage group. The average operation time, the transition from LC to laparotomy, the average postoperative hospital stay, and the incidence of complications of the three groups were compared. The results revealed that the comparison of the diagnostic accuracy and comprehensive effectiveness between experimental group and control group demonstrated that the differences were statistically significant ( P < 0.05). When the optimal interval of implementing LC after PTGD was realized, the corresponding values of the early group were 88.5 minutes, 16.67%, 8.13 days, and 13.75%. Those of the metaphase group were 49.91 minutes, 3.13%, 4.97 days, and 9.52%. Those of the late stage group were 68.78 minutes, 10.71%, 7.09 days, and 11.96%. To sum up, the diagnostic accuracy and comprehensive effectiveness of intelligent algorithm were higher than those of conventional ultrasound, and the optimal interval time of implementing LC after PTGD was 2 to 4 months.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos).

          The Tokyo Guidelines 2013 (TG13) for acute cholangitis and cholecystitis were globally disseminated and various clinical studies about the management of acute cholecystitis were reported by many researchers and clinicians from all over the world. The 1st edition of the Tokyo Guidelines 2007 (TG07) was revised in 2013. According to that revision, the TG13 diagnostic criteria of acute cholecystitis provided better specificity and higher diagnostic accuracy. Thorough our literature search about diagnostic criteria for acute cholecystitis, new and strong evidence that had been released from 2013 to 2017 was not found with serious and important issues about using TG13 diagnostic criteria of acute cholecystitis. On the other hand, the TG13 severity grading for acute cholecystitis has been validated in numerous studies. As a result of these reviews, the TG13 severity grading for acute cholecystitis was significantly associated with parameters including 30-day overall mortality, length of hospital stay, conversion rates to open surgery, and medical costs. In terms of severity assessment, breakthrough and intensive literature for revising severity grading was not reported. Consequently, TG13 diagnostic criteria and severity grading were judged from numerous validation studies as useful indicators in clinical practice and adopted as TG18/TG13 diagnostic criteria and severity grading of acute cholecystitis without any modification. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tokyo Guidelines 2018: antimicrobial therapy for acute cholangitis and cholecystitis.

              Antimicrobial therapy is a mainstay of the management for patients with acute cholangitis and/or cholecystitis. The Tokyo Guidelines 2018 (TG18) provides recommendations for the appropriate use of antimicrobials for community-acquired and healthcare-associated infections. The listed agents are for empirical therapy provided before the infecting isolates are identified. Antimicrobial agents are listed by class-definitions and TG18 severity grade I, II, and III subcategorized by clinical settings. In the era of emerging and increasing antimicrobial resistance, monitoring and updating local antibiograms is underscored. Prudent antimicrobial usage and early de-escalation or termination of antimicrobial therapy are now important parts of decision-making. What is new in TG18 is that the duration of antimicrobial therapy for both acute cholangitis and cholecystitis is systematically reviewed. Prophylactic antimicrobial usage for elective endoscopic retrograde cholangiopancreatography is no longer recommended and the section was deleted in TG18. Free full articles and mobile app of TG18 are available at: http://www.jshbps.jp/modules/en/index.php?content_id=47. Related clinical questions and references are also included.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                cin
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2022
                30 July 2022
                : 2022
                : 3602811
                Affiliations
                1Department of Ultrasound, Tangdu Hospital, Xian 710000, Shaanxi, China
                2Department of Ultrasound, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang 712000, Shaanxi, China
                Author notes

                Academic Editor: Arpit Bhardwaj

                Author information
                https://orcid.org/0000-0002-5634-1774
                https://orcid.org/0000-0001-5716-7117
                https://orcid.org/0000-0002-0492-1494
                https://orcid.org/0000-0001-6838-8011
                Article
                10.1155/2022/3602811
                9356791
                4020cca8-d5af-477f-8fdc-2ea9ca497955
                Copyright © 2022 Qiaoying Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 March 2022
                : 8 June 2022
                : 28 June 2022
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article