+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Differential Effect of COX1 and COX2 Inhibitors on Renal Outcomes following Ischemic Acute Kidney Injury

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Background/Aims: We have previously shown that 1 mg/kg indomethacin improves expression and functionality of renal organic anion transporters Oat1 and Oat3 after renal ischemia and furthermore improves renal outcome after ischemia. As we detected differential effects of COX1 or COX2 inhibitors on organic anion transport after ischemia and reperfusion in culture, we investigated the effect of the SC560 (COX1 inhibitor) and SC58125 (COX2 inhibitor) on expression of Oat1/3 and renal outcome after ischemic acute kidney injury (iAKI). Methods: iAKI was induced in rats by bilateral clamping of renal arteries for 45 min. SC560 or SC58125 (1 mg/kg each) were given intraperitoneally as soon as reperfusion started. Sham-treated animals served as controls. Oat1/3 were determined by qPCR and Western blot. Glomerular filtration rate (GFR), p-aminohippurate (PAH) clearance and PAH extraction ratio was determined. All parameters were detected 24 h after ischemia. Renal plasma flow was calculated. Results: In clamped animals SC560 (COX1 inhibitor) restored expression of Oat1/3, as well as renal perfusion. Additionally, SC560 substantially improved kidney function as measured by GFR. Application of the COX2 inhibitor SC58125 did not exert these beneficial effects. Conclusion: Our study indicates that COX1 inhibitor SC560 applied after ischemia prevents ischemia-induced downregulation of Oat1/3 during reperfusion and has a substantial protective effect on kidney function. Whether and to what particular extent this apparent improvement of function is mechanistically due to beneficial effects on tubular function, renal perfusion or glomerular filtration will be the scope of future studies.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Ischemic acute renal failure: an inflammatory disease?

          Inflammation plays a major role in the pathophysiology of acute renal failure resulting from ischemia. In this review, we discuss the contribution of endothelial and epithelial cells and leukocytes to this inflammatory response. The roles of cytokines/chemokines in the injury and recovery phase are reviewed. The ability of the mouse kidney to be protected by prior exposure to ischemia or urinary tract obstruction is discussed as a potential model to emulate as we search for pharmacologic agents that will serve to protect the kidney against injury. Understanding the inflammatory response prevalent in ischemic kidney injury will facilitate identification of molecular targets for therapeutic intervention.
            • Record: found
            • Abstract: found
            • Article: not found

            Pharmacological analysis of cyclooxygenase-1 in inflammation.

            The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 microM; COX-2 IC50 = 6.3 microM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.
              • Record: found
              • Abstract: found
              • Article: not found

              Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis.

              Prostaglandins formed by the cyclooxygenase (COX) enzymes are important mediators of inflammation in arthritis. The contribution of the inducible COX-2 enzyme to inflammation in rat adjuvant arthritis was evaluated by characterization of COX-2 expression in normal and arthritic paws and by pharmacological inhibition of COX-2 activity. The injection of adjuvant induced a marked edema of the hind footpads with coincident local production of PGE2. PG production was associated with upregulation of COX-2 mRNA and protein in the affected paws. In contrast, the level of COX-1 mRNA was unaffected by adjuvant injection. TNF-alpha and IL-6 mRNAs were also increased in the inflamed paws as was IL-6 protein in the serum. Therapeutic administration of a selective COX-2 inhibitor, SC-58125, rapidly reversed paw edema and reduced the level of PGE2 in paw tissue to baseline. Interestingly, treatment with the COX-2 inhibitor also reduced the expression of COX-2 mRNA and protein in the paw. Serum IL-6 and paw IL-6 mRNA levels were also reduced to near normal levels by SC-58125. Furthermore, inhibition of COX-2 resulted in a reduction of the inflammatory cell infiltrate and decreased inflammation of the synovium. Notably, the antiinflammatory effects of SC-58125 were indistinguishable from the effects observed for indomethacin. These results suggest that COX-2 plays a prominent role in the inflammation associated with adjuvant arthritis and that COX-2 derived PGs upregulate COX-2 and IL-6 expression at inflammatory sites.

                Author and article information

                Am J Nephrol
                American Journal of Nephrology
                S. Karger AG
                August 2014
                17 June 2014
                : 40
                : 1
                : 1-11
                aKlinik für Anästhesie und Operative Intensivmedizin, Universität Halle-Wittenberg, and bJulius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
                Author notes
                *Dr. rer. nat. Christoph Sauvant, Klinik für Anästhesie und Operative Intensivmedizin, Universität Halle-Wittenberg, Ernst-Grube-Strasse 40, DE-06120 Halle (Germany), E-Mail
                363251 Am J Nephrol 2014;40:1-11
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 7, Pages: 11
                Original Report: Laboratory Investigation


                Comment on this article