18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics

      , , , ,
      Experimental Mechanics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent advances in X-ray microtomography applied to materials

          S R Stock (2013)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Invited article: the fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis.

            Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              X-ray micro-tomography an attractive characterisation technique in materials science

                Bookmark

                Author and article information

                Journal
                Experimental Mechanics
                Exp Mech
                Springer Nature
                0014-4851
                1741-2765
                March 2010
                January 2010
                : 50
                : 3
                : 289-305
                Article
                10.1007/s11340-010-9333-7
                4029823f-3015-4c7b-841e-b549ccbf3f97
                © 2010
                History

                Comments

                Comment on this article