25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dimensions of Normal Personality as Networks in Search of Equilibrium: You Can't Like Parties if You Don't Like People : Dimensions of normal personality as networks

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modularity and community structure in networks

            M. Newman (2006)
            Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A cognitive-affective system theory of personality: reconceptualizing situations, dispositions, dynamics, and invariance in personality structure.

              A theory was proposed to reconcile paradoxical findings on the invariance of personality and the variability of behavior across situations. For this purpose, individuals were assumed to differ in (a) the accessibility of cognitive-affective mediating units (such as encodings, expectancies and beliefs, affects, and goals) and (b) the organization of relationships through which these units interact with each other and with psychological features of situations. The theory accounts for individual differences in predictable patterns of variability across situations (e.g., if A then she X, but if B then she Y), as well as for overall average levels of behavior, as essential expressions or behavioral signatures of the same underlying personality system. Situations, personality dispositions, dynamics, and structure were reconceptualized from this perspective.
                Bookmark

                Author and article information

                Journal
                European Journal of Personality
                Eur. J. Pers.
                Wiley-Blackwell
                08902070
                July 2012
                July 2012
                : 26
                : 4
                : 414-431
                Article
                10.1002/per.1866
                40409932-0c62-48a0-9231-77898ea1ba06
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article