113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and microbial production of a terpene-based advanced biofuel

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rising petroleum costs, trade imbalances and environmental concerns have stimulated efforts to advance the microbial production of fuels from lignocellulosic biomass. Here we identify a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and engineer microbial platforms for the production of its immediate precursor, bisabolene. First, we identify bisabolane as an alternative to D2 diesel by measuring the fuel properties of chemically hydrogenated commercial bisabolene. Then, via a combination of enzyme screening and metabolic engineering, we obtain a more than tenfold increase in bisabolene titers in Escherichia coli to >900 mg l −1. We produce bisabolene in Saccharomyces cerevisiae (>900 mg l −1), a widely used platform for the production of ethanol. Finally, we chemically hydrogenate biosynthetic bisabolene into bisabolane. This work presents a framework for the identification of novel terpene-based advanced biofuels and the rapid engineering of microbial farnesyl diphosphate-overproducing platforms for the production of biofuels.

          Abstract

          Advanced biofuels with comparable properties to petroleum-based fuels could be microbially produced from lignocellulosic biomass. In this study, Escherichia coli is engineered to produce bisabolene, the immediate precursor of bisabolane, a biosynthetic alternative to D2 diesel.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Production of the antimalarial drug precursor artemisinic acid in engineered yeast.

          Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.

            The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosynthesis of plant isoprenoids: perspectives for microbial engineering.

              Isoprenoids are a large and highly diverse group of natural products with many functions in plant primary and secondary metabolism. Isoprenoids are synthesized from common prenyl diphosphate precursors through the action of terpene synthases and terpene-modifying enzymes such as cytochrome P450 monooxygenases. Many isoprenoids have important applications in areas such as human health and nutrition, and much effort has been directed toward their production in microbial hosts. However, many hurdles must be overcome in the elucidation and functional microbial expression of the genes responsible for biosynthesis of an isoprenoid of interest. Here, we review investigations into isoprenoid function and gene discovery in plants as well as the latest advances in isoprenoid pathway engineering in both plant and microbial hosts.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 September 2011
                : 2
                : 483
                Affiliations
                [1 ]simpleJoint BioEnergy Institute , 5885 Hollis Avenue, Emeryville, California 94608, USA.
                [2 ]simplePhysical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, USA.
                [3 ]simpleDepartment of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California , Berkeley, California 94720, USA.
                Author notes
                Article
                ncomms1494
                10.1038/ncomms1494
                3195254
                21952217
                404177bf-826e-41ad-ab7b-c903c0915d02
                Copyright © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

                History
                : 04 May 2011
                : 26 August 2011
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article