18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cosmology with Standard Sirens: the Importance of the Shape of the Lensing Magnification Distribution

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gravitational waves (GWs) emitted by inspiraling binary black holes, expected to be detected by the Laser Interferometer Space Antenna (LISA), could be used to determine the luminosity distance to these sources with the unprecedented precision of <~ 1%. We study cosmological parameter constraints from such standard sirens, in the presence of gravitational lensing by large-scale structure. Lensing introduces magnification with a probability distribution function (PDF) whose shape is highly skewed and depends on cosmological parameters. We use Monte-Carlo simulations to generate mock samples of standard sirens, including a small intrinsic scatter, as well as the additional, larger scatter from lensing, in their inferred distances. We derive constraints on cosmological parameters, by simultaneously fitting the mean and the distribution of the residuals on the distance vs redshift (d_L - z) Hubble diagram. We find that for standard sirens at redshift z ~ 1, the sensitivity to a single cosmological parameter, such as the matter density Omega_m, or the dark energy equation of state w, is ~ 50%-80% tighter when the skewed lensing PDF is used, compared to the sensitivity derived from a Gaussian PDF with the same variance. When these two parameters are constrained simultaneously, the skewness yields a further enhanced improvement (by ~ 120%), owing to the correlation between the parameters. The sensitivity to the amplitude of the matter power spectrum, sigma_8 from the cosmological dependence of the PDF alone, however, is ~ 20% worse than that from the Gaussian PDF. At higher redshifts, the PDF resembles a Gaussian more closely, and the effects of the skewness become less prominent. These results highlight the importance of obtaining an accurate and reliable PDF of the lensing convergence, in order to realize the full potential of standard sirens as cosmological probes.

          Related collections

          Author and article information

          Journal
          20 April 2010
          Article
          10.1111/j.1365-2966.2010.17607.x
          1004.3562
          404ffc4f-f297-4c97-b1ed-cfd0b9bd7089

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          16 pages, 9 tables, 12 figures, submitted to MNRAS
          astro-ph.CO

          Comments

          Comment on this article