42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a Role for the PI3K/AKT/mTOR Signaling Pathway in Innate Immune Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The innate immune system is the first line of host defense against infection and involves several different cell types. Here we investigated the role of the phosphatidylinositol 3 kinase (PI3K) signaling pathway in innate immune cells. By blocking this pathway with pharmacological inhibitors, we found that the production of proinflammatory cytokines was drastically suppressed in monocytes and macrophages. Further study revealed that the suppression was mainly related to the mammalian target of rapamycin (mTOR)/p70 S6K signaling. In addition, we found that the PI3K pathway was involved in macrophage motility and neovascularization. Our data provide a rationale that inhibition of the PI3K signaling pathway could be an attractive approach for the management of inflammatory disorders.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

          Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity, insulin resistance and free fatty acids.

            To describe the role of free fatty acid (FFA) as a cause for insulin resistance in obese people. Elevated plasma FFA levels can account for a large part of insulin resistance in obese patients with type 2 diabetes. Insulin resistance is clinically important because it is closely associated with several diseases including type 2 diabetes, hypertension, dyslipidemia and abnormalities in blood coagulation and fibrinolysis. These disorders are all independent risk factors for cardiovascular disease (heart attacks, strokes and peripheral arterial disease). The mechanisms by which FFA can cause insulin resistance, although not completely known, include generation of lipid metabolites (diacylglycerol), proinflammatory cytokines (TNF-α, IL-1β, IL-6, MCP1) and cellular stress including oxidative and endoplasmic reticulum stress. Increased plasma FFA levels are an important cause of obesity-associated insulin resistance and cardiovascular disease. Therapeutic application of this knowledge is hampered by the lack of readily accessible methods to measure FFA and by the lack of medications to lower plasma FFA levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans.

              Components of the innate immune response, including neutrophils and macrophages, are the first line of defense against infections. Their role is to initiate an inflammatory response, phagocyte and kill pathogens, recruit natural killer cells (NK), and facilitate the maturation and migration of dendritic cells that will initiate the adaptive immune response. Extraordinary advances have been made in the last decade on the knowledge of the receptors and mechanisms used by cells of the innate immunity not only to sense and eliminate the pathogen but also to communicate each other and collaborate with cells of adaptive immunity to mount an effective immune response. The analysis of innate immunity in elderly humans has evidenced that aging has a profound impact on the phenotype and functions of these cells. Thus altered expression and/or function of innate immunity receptors and signal transduction leading to defective activation and decreased chemotaxis, phagocytosis and intracellular killing of pathogens have been described. The phenotype and function of NK cells from elderly individuals show significant changes that are compatible with remodeling of the different NK subsets, with a decrease in the CD56bright subpopulation and accumulation of the CD56dim cells, in particular those differentiated NK cells that co-express CD57, as well as a decreased expression of activating natural cytotoxicity receptors. These alterations can be responsible of the decreased production of cytokines and the lower per-cell cytotoxicity observed in the elderly. Considering the relevance of these cells in the initiation of the immune response, the possibility to reactivate the function of innate immune cells should be considered in order to improve the response to pathogens and to vaccination in the elderly. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                9 April 2014
                : 9
                : 4
                : e94496
                Affiliations
                [1]State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
                French National Centre for Scientific Research, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DL XC. Performed the experiments: SX MC BY XH. Analyzed the data: SX. Wrote the paper: SX.

                Article
                PONE-D-14-05976
                10.1371/journal.pone.0094496
                3981814
                24718556
                405edbd8-6da8-488a-896d-efa00db4bf0b
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 February 2014
                : 16 March 2014
                Page count
                Pages: 10
                Funding
                This work was supported by grants from the National Natural Science Foundation of China (31171334 and 31371382), the Tianjin Natural Science Foundation (13JCZDJC30300), and the 111 project of the Ministry of Education of China (B08011). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Nucleic Acids
                Cell Biology
                Cellular Types
                Molecular Cell Biology
                Signal Transduction

                Uncategorized
                Uncategorized

                Comments

                Comment on this article