7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metal-Loaded Mesoporous MCM-41 for the Catalytic Wet Peroxide Oxidation (CWPO) of Acetaminophen

      , , , , , ,
      Catalysts
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MCM-41 based catalysts (molar ratio Si/Al = 40) were prepared by a hydrothermal route, modified by ionic exchange with different metals (Cu, Cr, Fe and Zn) and finally calcined at 550 °C. The catalysts were fully characterized by different techniques that confirmed the formation of oxides of the different metals on the surfaces of all materials. Low-angle X-ray diffraction (XRD) analyses showed that calcination resulted in the incorporation of metallic Zn, Fe and Cr in the framework of MCM-41, while in the case of Cu, thin layers of CuO were formed on the surface of MCM-41. The solids obtained were tested in the catalytic wet peroxide oxidation (CWPO) of acetaminophen at different temperatures (25–55 °C). The activity followed the order: Cr/MCM-41 ≥ Fe/MCM-41 > Cu/MCM-41 > Zn/MCM-41. The increase of the reaction temperature improved the performance and activity of Cr/MCM-41 and Fe/MCM-41 catalysts, which achieved complete conversion of acetaminophen in short reaction times (15 min in the case of Cr/MCM-41). Fe/MCM-41 and Cr/MCM-41 were submitted to long-term experiments, being the Fe/MCM-41 catalyst the most stable with a very low metal leaching. The leaching results were better than those previously reported in the literature, confirming the high stability of Fe/MCM-41 catalysts synthesized in this study.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: not found
          • Article: not found

          Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.

            Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistance in the environment.

              Antibiotics, disinfectants and bacteria resistant to them have been detected in environmental compartments such as waste water, surface water, ground water, sediments and soils. Antibiotics are released into the environment after their use in medicine, veterinary medicine and their employment as growth promoters in animal husbandry, fish farming and other fields. There is increasing concern about the growing resistance of pathogenic bacteria in the environment, and their ecotoxic effects. Increasingly, antibiotic resistance is seen as an ecological problem. This includes both the ecology of resistance genes and that of the resistant bacteria themselves. Little is known about the effects of subinhibitory concentrations of antibiotics and disinfectants on environmental bacteria, especially with respect to resistance. According to the present state of our knowledge, the impact on the frequency of resistance transfer by antibacterials present in the environment is questionable. The input of resistant bacteria into the environment seems to be an important source of resistance in the environment. The possible impact of resistant bacteria on the environment is not yet known. Further research into these issues is warranted.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CATACJ
                Catalysts
                Catalysts
                MDPI AG
                2073-4344
                February 2021
                February 07 2021
                : 11
                : 2
                : 219
                Article
                10.3390/catal11020219
                40692b8e-ef6b-47a2-82e5-6f36d6d9c2a1
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article