5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of telmisartan on nitric oxide--asymmetrical dimethylarginine system: role of angiotensin II type 1 receptor gamma and peroxisome proliferator activated receptor gamma signaling during endothelial aging.

      Hypertension
      Acrylates, pharmacology, Amidohydrolases, genetics, metabolism, Angiotensin II, Angiotensin II Type 1 Receptor Blockers, Anilides, Arginine, analogs & derivatives, Benzimidazoles, Benzoates, Cell Aging, drug effects, physiology, Cells, Cultured, Down-Regulation, Endothelium, Vascular, cytology, Humans, Imidazoles, Nitric Oxide, Oxidative Stress, PPAR gamma, antagonists & inhibitors, Receptor, Angiotensin, Type 1, Signal Transduction, Thiophenes, Up-Regulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Telmisartan, in addition to blocking angiotensin (Ang) II type 1 receptor (AT(1)R), activates peroxisome proliferator activated receptor gamma (PPARgamma) signaling that interferes with nitric oxide (NO) system. Because aging of endothelial cells (ECs) is hallmarked by a reduction in NO synthesis, we hypothesized that telmisartan increases NO formation by regulated asymmetrical dimethylarginine (ADMA)-dimethylarginine dimethylaminohydrolase (DDAH)-system through blocking AT(1)R and activating PPARgamma signaling. To test this hypothesis, ECs were cultured with telmisartan, eprosartan, Ang II, and GW9662 (PPARgamma antagonist) until the twelfth passage. During the process of aging, PPARgamma protein expression decreased significantly, whereas the expression of AT(1)R increased. Telmisartan reversed these effects and dose-dependently decreased reactive oxygen species and 8-iso-prostaglandin (PG) F(2alpha) formation. This effect was associated with an upregulated activity and protein expression of DDAH, accompanied by a decrease in ADMA concentration, an increase in NO metabolites, and delayed senescence. Blockade of PPARgamma signaling by GW9662 or PPARgamma small-interference RNA prevented the effect of telmisartan on ADMA-DDAH-NO system. Coincubation with Ang II did not affect the effect of telmisartan-delayed senescence, whereas Ang II itself accelerated endothelial aging. Moreover, AT(1)R blocker eprosartan that did not influence PPARgamma protein expression had no effect on ADMA system and senescence. We have demonstrated that telmisartan mainly by activating PPARgamma signaling can alter the catabolism and release of ADMA as an important cardiovascular risk factor. We therefore propose that telmisartan translationally and posttranslationally upregulated DDAH expression via activation of PPARgamma signaling, causing ADMA to diminish and increase NO synthesis sufficient to delay senescence.

          Related collections

          Author and article information

          Comments

          Comment on this article