80
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Evolutionary Trajectories to Antibiotic Resistance

      1 , 1
      Annual Review of Microbiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to predict the evolutionary trajectories of antibiotic resistance would be of great value in tailoring dosing regimens of antibiotics so as to maximize the duration of their usefulness. Useful prediction of resistance evolution requires information about (a) the mutation supply rate, (b) the level of resistance conferred by the resistance mechanism, (c) the fitness of the antibiotic-resistant mutant bacteria as a function of drug concentration, and (d) the strength of selective pressures. In addition, processes including epistatic interactions and compensatory evolution, coselection of drug resistances, and population bottlenecks and clonal interference can strongly influence resistance evolution and thereby complicate attempts at prediction. Currently, the very limited quantitative data on most of these parameters severely limit attempts to accurately predict trajectories of resistance evolution.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Microbiological effects of sublethal levels of antibiotics.

          The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sampling the antibiotic resistome.

            Microbial resistance to antibiotics currently spans all known classes of natural and synthetic compounds. It has not only hindered our treatment of infections but also dramatically reshaped drug discovery, yet its origins have not been systematically studied. Soil-dwelling bacteria produce and encounter a myriad of antibiotics, evolving corresponding sensing and evading strategies. They are a reservoir of resistance determinants that can be mobilized into the microbial community. Study of this reservoir could provide an early warning system for future clinically relevant antibiotic resistance mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Challenges of antibacterial discovery.

              The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
                Bookmark

                Author and article information

                Journal
                Annual Review of Microbiology
                Annu. Rev. Microbiol.
                Annual Reviews
                0066-4227
                1545-3251
                September 08 2017
                September 08 2017
                : 71
                : 1
                : 579-596
                Affiliations
                [1 ]Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
                Article
                10.1146/annurev-micro-090816-093813
                28697667
                407553a5-2053-4183-823a-6eeb7bf2809d
                © 2017

                http://www.annualreviews.org/licenses/tdm

                History

                Social policy & Welfare,General medicine,Environmental change,Infectious disease & Microbiology,Public health

                Comments

                Comment on this article