24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STAT4 controls GM-CSF production by both Th1 and Th17 cells during EAE

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, mice genetically deficient in the transcription factor signal transducer and activator of transcription 4 (STAT4) are resistant to disease. In contrast, deletion or inhibition of the Th1-associated cytokines IL-12 or IFNγ which act upstream and downstream of STAT4, respectively, does not ameliorate disease. These discordant findings imply that STAT4 may act in a non-canonical role during EAE. Recently, STAT4 has been shown to regulate GM-CSF production by CD4 T cells and this cytokine is necessary for the induction of EAE. However, it is not known if STAT4 controls GM-CSF production by both Th1 and Th17 effector CD4 T cells.

          Methods

          This study utilized the MOG 35–55 peptide immunization model of EAE. Intracellular cytokine staining and novel mixed bone marrow chimeric mice were used to study the CD4 T cell-intrinsic role of STAT4 during disease. STAT4 chromatin-immunoprecipitation (ChIP-PCR) experiments were performed to show STAT4 directly interacts with the Csf2 gene loci.

          Results

          Herein, we demonstrate that STAT4 controls CD4 T cell-intrinsic GM-CSF production by both Th1 and Th17 CD4 T cells during EAE as well as in vitro. Importantly, we show that STAT4 interacts with the Csf2 locus in MOG 35–55-activated effector CD4 T cells demonstrating direct modulation of GM-CSF.

          Conclusions

          Overall, these studies illustrate a previously unrecognized role of STAT4 to regulate GM-CSF production by not only Th1 cells, but also Th17 effector CD4 T cell subsets during EAE pathogenesis. Critically, these data highlight for the first time that STAT4 is able to modulate the effector profile of Th17 CD4 T cell subsets, which redefines our current understanding of STAT4 as a Th1-centric factor.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12974-015-0351-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain.

          Interleukin-12 (IL-12) is a heterodimeric molecule composed of p35 and p40 subunits. Analyses in vitro have defined IL-12 as an important factor for the differentiation of naive T cells into T-helper type 1 CD4+ lymphocytes secreting interferon-gamma (refs 1, 2). Similarly, numerous studies have concluded that IL-12 is essential for T-cell-dependent immune and inflammatory responses in vivo, primarily through the use of IL-12 p40 gene-targeted mice and neutralizing antibodies against p40. The cytokine IL-23, which comprises the p40 subunit of IL-12 but a different p19 subunit, is produced predominantly by macrophages and dendritic cells, and shows activity on memory T cells. Evidence from studies of IL-23 receptor expression and IL-23 overexpression in transgenic mice suggest, however, that IL-23 may also affect macrophage function directly. Here we show, by using gene-targeted mice lacking only IL-23 and cytokine replacement studies, that the perceived central role for IL-12 in autoimmune inflammation, specifically in the brain, has been misinterpreted and that IL-23, and not IL-12, is the critical factor in this response. In addition, we show that IL-23, unlike IL-12, acts more broadly as an end-stage effector cytokine through direct actions on macrophages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation of Pathogenic Th17 Cells in the Absence of TGF-β Signaling

            CD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity 1–4 . Crucial for T helper17 (Th17) cells in vivo 5,6 , IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been argued to be the factors responsible for initiating specification 7–10 . Herein, we show that Th17 differentiation can occur in the absence of TGF-β signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naïve precursors, independently of TGF-β. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed Rorγt and T-bet. T-bet+ Rorγt+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data suggest an alternative mode for Th17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore have may have therapeutic implications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colony-stimulating factors in inflammation and autoimmunity.

              Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
                Bookmark

                Author and article information

                Contributors
                IanLMcW@uab.edu
                pokhara@uab.edu
                Snozell@uab.edu
                Tika@uab.edu
                (205) 996-9795 , lharring@uab.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                30 June 2015
                30 June 2015
                2015
                : 12
                : 128
                Affiliations
                Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 845 19th Street South, BBRB 471, Birmingham, AL 35294 USA
                Article
                351
                10.1186/s12974-015-0351-3
                4491892
                26123499
                407bee82-0b50-4f46-b468-097e39a15595
                © McWilliams et al. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 April 2015
                : 19 June 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Neurosciences
                stat4,eae,ms,th17,th1,gm-csf
                Neurosciences
                stat4, eae, ms, th17, th1, gm-csf

                Comments

                Comment on this article