13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applications of modern ferroelectrics.

            J. Scott (2007)
            Long viewed as a topic in classical physics, ferroelectricity can be described by a quantum mechanical ab initio theory. Thin-film nanoscale device structures integrated onto Si chips have made inroads into the semiconductor industry. Recent prototype applications include ultrafast switching, cheap room-temperature magnetic-field detectors, piezoelectric nanotubes for microfluidic systems, electrocaloric coolers for computers, phased-array radar, and three-dimensional trenched capacitors for dynamic random access memories. Terabit-per-square-inch ferroelectric arrays of lead zirconate titanate have been reported on Pt nanowire interconnects and nanorings with 5-nanometer diameters. Finally, electron emission from ferroelectrics yields cheap, high-power microwave devices and miniature x-ray and neutron sources.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure prediction using ab initio evolutionary techniques: principles and applications.

              We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high (nearly 100%) success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures (stable phases: epsilon-oxygen, new phase of sulphur, new metastable phases of carbon, sulphur and nitrogen, stable and metastable phases of CaCO3). Physical reasons for the success of this methodology are discussed.
                Bookmark

                Author and article information

                Journal
                Nature Materials
                Nature Mater
                Springer Nature America, Inc
                1476-1122
                1476-4660
                October 22 2018
                Article
                10.1038/s41563-018-0196-0
                30349031
                407f4f3a-8cc6-4b9d-903b-c84ed0c702dd
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article