18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical plasma cells-related genes to aid therapy in colon cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tumor immune microenvironment (TIME) of colon cancer (CC) has been associated with extensive immune cell infiltration (IMI). Increasing evidence demonstrated that plasma cells (PC) have an extremely important role in advance of antitumor immunity. Nonetheless, there is a lack of comprehensive analyses of PC infiltration in clinical prognosis and immunotherapy in CC. This study systematically addressed the gene expression model and clinical information of CC patients. Clinical samples were obtained from the TCGA (The Cancer Genome Atlas) databases. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), GSVA, and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were employed to research the potential mechanism and pathways. Immunophenoscore (IPS) was obtained to evaluate the immunotherapeutic significance of risk score. Half maximal inhibitory concentration (IC50) of chemotherapeutic medicine was predicted by employing the pRRophetic algorithm. A total of 513 CC samples (including 472 tumor samples and 41 normal samples) were collected from the TCGA-GDC database. Significant black modules and 313 candidate genes were considered PC-related genes by accessing WGCNA. Five pivotal genes were established through multiple analyses, which revealed excellent prognostic. The underlying correlation between risk score with tumor mutation burden (TMB) was further explored. In addition, the risk score was obviously correlated with various tumor immune microenvironment (TIME). Also, risk CC samples showed various signaling pathways activity and different pivotal sensitivities to administering chemotherapy. Finally, the biological roles of the CD177 gene were uncovered in CC.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12864-023-09481-4.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          clusterProfiler: an R package for comparing biological themes among gene clusters.

          Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
            • Record: found
            • Abstract: found
            • Article: not found

            KEGG: kyoto encyclopedia of genes and genomes.

            M Kanehisa (2000)
            KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              WGCNA: an R package for weighted correlation network analysis

              Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at .

                Author and article information

                Contributors
                zhyi7963@hotmail.com
                mcq_1964@sina.com
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                1 August 2023
                1 August 2023
                2023
                : 24
                : 430
                Affiliations
                [1 ]GRID grid.410745.3, ISNI 0000 0004 1765 1045, Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, , Affiliated Hospital of Nanjing University of Chinese Medicine, ; Nanjing, 210029 China
                [2 ]Zhuzhou Orthopaedic Hospital of Traditional Chinese Medicine, Zhuzhou, 412000, China
                [3 ]Xi’an Daxing Hospital, Xian, 710000 China
                [4 ]GRID grid.412676.0, ISNI 0000 0004 1799 0784, Department of Oncology, , The First Affiliated Hospital of Nanjing Medical University, ; Nanjing, 210029 China
                Article
                9481
                10.1186/s12864-023-09481-4
                10391883
                37528394
                408f831d-2ab1-40a1-9cd6-37b844529145
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 January 2023
                : 23 June 2023
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Genetics
                colon cancer,plasma cells,tumor immune microenvironment,prognosis prediction,clinical therapy,tumor mutation burden

                Comments

                Comment on this article

                Related Documents Log