11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase–mediated cross-linking

      , , ,
      Journal of Biological Chemistry
      American Society for Biochemistry & Molecular Biology (ASBMB)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d565992e183">Nonenzymatic glycation of collagen has long been associated with the progressive secondary complications of diabetes. How exactly such random glycations result in impaired tissues is still poorly understood. Because of the slow turnover rate of most fibrillar collagens, they are more susceptible to accumulate time-dependent glycations and subsequent advanced glycation end-products. The latter are believed to include cross-links that stiffen host tissues. However, diabetic animal models have also displayed weakened tendons with reduced stiffness. Strikingly, not a single experimentally identified specific molecular site of glycation in a collagen has been reported. Here, using targeted MS, we have identified partial fructosyl-hydroxylysine glycations at each of the helical domain cross-linking sites of type I collagen that are elevated in tissues from a diabetic mouse model. Glycation was not found at any other collagen lysine residues. Type I collagen in mouse tendons is cross-linked intermolecularly by acid-labile aldimine bonds formed by the addition of telopeptide lysine aldehydes to hydroxylysine residues at positions α1(I)Lys <sup>87</sup>, α1(I)Lys <sup>930</sup>, α2(I)Lys <sup>87</sup>, and α2(I)Lys <sup>933</sup> of the triple helix. Our data reveal that site-specific glycations of these specific lysines may significantly impair normal lysyl oxidase–controlled cross-linking in diabetic tendons. We propose that such <i>N</i>-linked glycations can hinder the normal cross-linking process, thus altering the content and/or placement of mature cross-links with the potential to modify tissue material properties. </p>

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of collagen turnover on the accumulation of advanced glycation end products.

          Collagen molecules in articular cartilage have an exceptionally long lifetime, which makes them susceptible to the accumulation of advanced glycation end products (AGEs). In fact, in comparison to other collagen-rich tissues, articular cartilage contains relatively high amounts of the AGE pentosidine. To test the hypothesis that this higher AGE accumulation is primarily the result of the slow turnover of cartilage collagen, AGE levels in cartilage and skin collagen were compared with the degree of racemization of aspartic acid (% d-Asp, a measure of the residence time of a protein). AGE (N(epsilon)-(carboxymethyl)lysine, N(epsilon)-(carboxyethyl)lysine, and pentosidine) and % d-Asp concentrations increased linearly with age in both cartilage and skin collagen (p < 0.0001). The rate of increase in AGEs was greater in cartilage collagen than in skin collagen (p < 0.0001). % d-Asp was also higher in cartilage collagen than in skin collagen (p < 0.0001), indicating that cartilage collagen has a longer residence time in the tissue, and thus a slower turnover, than skin collagen. In both types of collagen, AGE concentrations increased linearly with % d-Asp (p < 0.0005). Interestingly, the slopes of the curves of AGEs versus % d-Asp, i.e. the rates of accumulation of AGEs corrected for turnover, were identical for cartilage and skin collagen. The present study thus provides the first experimental evidence that protein turnover is a major determinant in AGE accumulation in different collagen types. From the age-related increases in % d-Asp the half-life of cartilage collagen was calculated to be 117 years and that of skin collagen 15 years, thereby providing the first reasonable estimates of the half-lives of these collagens.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cross-linking in collagen and elastin.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.

              Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                Journal of Biological Chemistry
                American Society for Biochemistry & Molecular Biology (ASBMB)
                00219258
                October 2018
                October 2018
                : 293
                : 40
                : 15620-15627
                Article
                10.1074/jbc.RA118.004829
                6177574
                30143533
                4098d1ba-16d5-4d5e-8d21-e3e022d48a8e
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article