18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia Promotes Vascular Smooth Muscle Cell Proliferation through microRNA-Mediated Suppression of Cyclin-Dependent Kinase Inhibitors

      research-article
      , *
      Cells
      MDPI
      vascular smooth muscle cells, microRNAs, cyclin-dependent kinase inhibitors, hypoxia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regulation of vascular smooth muscle cell (VSMC) proliferation is essential to maintain vascular homeostasis. Hypoxia induces abnormal proliferation of VSMCs and causes vascular proliferative disorders, such as pulmonary hypertension and atherosclerosis. As several cyclin/cyclin-dependent kinase (CDK) complexes and CDK inhibitors (CKIs) control cell proliferation, in this study, we investigated CKIs involved in the hypoxia-induced proliferation process of human primary pulmonary artery smooth muscle cells to understand the underlying molecular mechanism. We demonstrated that p15, p16, and p21 are downregulated in pulmonary artery smooth muscle cells when exposed to hypoxia. In addition, we identified novel hypoxia-induced microRNAs (hypoxamiRs) including miR-497, miR-1268a, and miR-665 that are upregulated under hypoxia and post-transcriptionally regulate p15, p16, and p21 genes, respectively, by directly targeting their 3’UTRs. These miRNAs promoted the proliferation of VSMCs, and their inhibition decreased VSMC proliferation even in hypoxic conditions. Overall, this study revealed that miRNA-mediated regulatory mechanism of CKIs is essential for hypoxia-induced proliferation of VSMCs. These findings provide insights for a better understanding of the pathogenesis of vascular proliferative disorders.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA control of signal transduction.

          MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CDK inhibitors: cell cycle regulators and beyond.

            First identified as cell cycle inhibitors mediating the growth inhibitory cues of upstream signaling pathways, the cyclin-CDK inhibitors of the Cip/Kip family p21Cip1, p27Kip1, and p57Kip2 have emerged as multifaceted proteins with functions beyond cell cycle regulation. In addition to regulating the cell cycle, Cip/Kip proteins play important roles in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. A complex phosphorylation network modulates Cip/Kip protein functions by altering their subcellular localization, protein-protein interactions, and stability. These functions are essential for the maintenance of normal cell and tissue homeostasis, in processes ranging from embryonic development to tumor suppression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

              Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                31 July 2019
                August 2019
                : 8
                : 8
                : 802
                Affiliations
                Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Korea
                Author notes
                [* ]Correspondence: harakang@ 123456inu.ac.kr
                Article
                cells-08-00802
                10.3390/cells8080802
                6721514
                31370272
                40a27d50-c833-4b4b-904b-ae5e7f0214d4
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 July 2019
                : 29 July 2019
                Categories
                Article

                vascular smooth muscle cells,micrornas,cyclin-dependent kinase inhibitors,hypoxia

                Comments

                Comment on this article