24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Salinity and crop yield

      1 , 2 , 3
      Plant Biology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thirty crop species provide 90% of our food, most of which display severe yield losses under moderate salinity. Securing and augmenting agricultural yield in times of global warming and population increase is urgent and should, aside from ameliorating saline soils, include attempts to increase crop plant salt tolerance. This short review provides an overview of the processes that limit growth and yield in saline conditions. Yield is reduced if soil salinity surpasses crop-specific thresholds, with cotton, barley and sugar beet being highly tolerant, while sweet potato, wheat and maize display high sensitivity. Apart from Na+ , also Cl- , Mg2+ , SO42- or HCO3- contribute to salt toxicity. The inhibition of biochemical or physiological processes cause imbalance in metabolism and cell signalling and enhance the production of reactive oxygen species interfering with cell redox and energy state. Plant development and root patterning is disturbed, and this response depends on redox and reactive oxygen species signalling, calcium and plant hormones. The interlink of the physiological understanding of tolerance processes from molecular processes as well as the agronomical techniques for stabilizing growth and yield and their interlinks might help improving our crops for future demand and will provide improvement for cultivating crops in saline environment.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Genes and salt tolerance: bringing them together.

          Rana Munns (2005)
          Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

            Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elucidating the molecular mechanisms mediating plant salt-stress responses.

              Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
                Bookmark

                Author and article information

                Journal
                Plant Biology
                Plant Biol J
                Wiley
                1435-8603
                1438-8677
                December 13 2018
                January 2019
                September 05 2018
                January 2019
                : 21
                : S1
                : 31-38
                Affiliations
                [1 ]Institute of Crop Science University of Hohenheim Stuttgart Germany
                [2 ]Albrecht Daniel Thaer‐Institute of Agricultural and Horticultural Sciences Division of Controlled Environment Horticulture Humboldt Universität Berlin Berlin Germany
                [3 ]Biochemistry and Physiology of Plants Universität Bielefeld Bielefeld Germany
                Article
                10.1111/plb.12884
                30059606
                40a2e609-a2c4-4cef-a243-728e9cdbf685
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article