10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oncosomes – large and small: what are they, where they came from?

      letter
      1 , 2 , * , 3 , *
      Journal of Extracellular Vesicles
      Co-Action Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dear Editor, Terminology matters. After all this is the basis of the formal code that allows investigators to communicate, compare notes and use computational tools to access molecular databases. If the same term is assigned different or inconsistent meanings, or different terms are used to describe the same entity, communications degenerate. This is why occasional debate on what specific terms mean, where they came from, and what is their best use is a healthy exercise. Few scientific communities experienced this problem more acutely than those of us who work on what is now collectively described as extracellular vesicles (EVs). The underlying biological complexity, technical considerations, historical reasons and cultures of different parental research fields have stimulated semantic creativity to produce a mind numbing plethora of descriptors, including terms such as exosomes, ectosomes, microvesicles, microparticles, shed vesicles, prostasomes, promininosomes, tolerosomes, apoptotic bodies, nanovesicles and several others, the meaning of which is only recently being more rigorously considered (1–3). The case in point are EVs known as “oncosomes.” At the time of this writing, there were at least 26 PubMed citations and a handful of authoritative review articles, in which the term “oncosomes” has been used (including as key word) to highlight different aspects of EV release by cancer cells (4–7). In spite of its intuitive usefulness and convenient “ring,” this term is often applied in ways that have little to do with its intended meaning, circumstances under which it has been coined in our respective laboratories, ontologic efficiency or any consensus in the field. Therefore, some context may be useful in putting things in perspective towards establishing meaningful definitions. In 2008, we described the first piece of experimental evidence that the oncogenic form (variant III) of the epidermal growth factor receptor (EGFR), EGFRvIII, which is relatively specific to human glioblastoma (GBM), is released from brain tumour cells as cargo of EVs that range between 100 and 400 nm in diameter and carry phosphatidylserine on their surfaces (8). While the biogenesis of these EVs was initially unknown, this observation signified the ability of EVs to mediate the extracellular exit of structurally and functionally abnormal, mutant and potentially transforming macromolecules (oncogenes). This feature fundamentally and qualitatively distinguishes such oncogene-containing EVs from all of their counterparts that may be produced by transformed or non-transformed cellular populations, regardless of the state, function and origin of such cells. Indeed, this is the basis of the contention that EVs could serve as reservoir of cancer-specific biomarkers recoverable from biological fluids. To highlight this uniqueness of oncogene-carrying EVs, one of us (B.M.) coined the term “oncosomes,” which was included in the related manuscript (8) and reiterated in subsequent writings (9, 10). Again, in this case the root particle “onco-” refers to the oncogenic molecular cargo of cancer-derived EVs. In 2009, one of the co-authors (D.D.V.) described a process whereby amoeboid migration of metastatic prostate cancer cells triggered production of gigantic EVs (>1,000 nm to >10,000 nm) found to emanate from large protrusions of the cellular plasma membrane (11). Formation of these EVs was dependent on cellular transformation, including activation of AKT1 and EGFR pathways, and was associated with abnormal assembly of molecular cargo, including proteins and nucleic acids. This process also reflected both the oncogenic transformation and a transition to a fast migratory and highly metastatic amoeboid phenotype of cancer cells (12). These EVs were also initially referred to as “oncosomes” but were clearly structurally and morphologically unique, beyond their molecular content. To capture this cancer-related abnormal structure and content of these highly unusual EVs, they were subsequently described as “large oncosomes” (LOs), a term that has since been consistently used in original contributions on this subject (12–14). Interestingly, LO-like EVs may have gone underreported. For example, structures with similar characteristics (microparticles or cytoplasts) have recently been implicated in modulating innate immunity at metastatic cancer sites (15), and were also observed during formation of invadopodia and cancer cell extravasation (16). Again, in this case the distinguishing feature was the biogenetic process leading to formation of very large EVs by specific types of cancer cells. Indeed, as a corollary, it may also be useful to consider additional specific terms to describe large EVs produced by non-transformed cells as discussed by Kowal et al. (1). Perhaps in this case terms such as large EVs, “megavesicles” or shed cytoplasts could be far more appropriate than “oncosomes.” Thus, terms “oncosomes” and “large oncosomes” are not synonymous or interchangeable. They have different origins, conceptual contexts, EV size reference and contents, and were introduced at different times and for very different specific reasons by different research groups. In none of these instances, the term “oncosomes” simply refers to the fact that these EVs emanate from cancer cells as such. Instead, these descriptors are meant to highlight two different unique consequences of malignant transformation, as it intersects with cellular vesiculation processes, namely the emission of oncogenic macromolecules and abnormalities in the EV biogenesis, respectively. Arguably both of these features are important and the related terms may retain their original usefulness, but only as long as they are applied in a purposeful, meaningful and consistent manner. Brian Meehan Child Health and Human Development ProgramThe Research Institute of the McGill University Health CentreMontreal, Quebec, Canada Janusz Rak Department of Pediatrics, Biochemistry, and Experimental Medicine McGill UniversityChild Health and Human Development Program, The Research Institute of the McGill University Health CentreMontreal, Quebec, CanadaEmail: janusz.rak@mcgill.ca Dolores Di Vizio Division of Cancer Biology and TherapeuticsDepartments of Surgery, Biomedical Sciences and Pathology and Laboratory MedicineSamuel Oschin Comprehensive Cancer InstituteCedars-Sinai Medical CenterLos Angeles, CA, United StatesEmail: Dolores.Divizio@cshs.org

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'.

          Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis.

            Tumor cell extravasation is a key step during cancer metastasis, yet the precise mechanisms that regulate this dynamic process are unclear. We utilized a high-resolution time-lapse intravital imaging approach to visualize the dynamics of cancer cell extravasation in vivo. During intravascular migration, cancer cells form protrusive structures identified as invadopodia by their enrichment of MT1-MMP, cortactin, Tks4, and importantly Tks5, which localizes exclusively to invadopodia. Cancer cells extend invadopodia through the endothelium into the extravascular stroma prior to their extravasation at endothelial junctions. Genetic or pharmacological inhibition of invadopodia initiation (cortactin), maturation (Tks5), or function (Tks4) resulted in an abrogation of cancer cell extravasation and metastatic colony formation in an experimental mouse lung metastasis model. This provides direct evidence of a functional role for invadopodia during cancer cell extravasation and distant metastasis and reveals an opportunity for therapeutic intervention in this clinically important process. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extracellular vesicles in the biology of brain tumour stem cells--Implications for inter-cellular communication, therapy and biomarker development.

              Extracellular vesicles (EVs) act as carriers of molecular and oncogenic signatures present in subsets of tumour cells and tumour-associated stroma, and as mediators of intercellular communication. These processes likely involve cancer stem cells (CSCs). EVs represent a unique pathway of cellular export and cell-to-cell transfer of insoluble molecular regulators such as membrane receptors, signalling proteins and metabolites, thereby influencing the functional integration of cancer cell populations. While mechanisms that control biogenesis, cargo and uptake of different classes of EVs (exosomes, microvesicles, ectosomes, large oncosomes) are poorly understood, they likely remain under the influence of stress-responses, microenvironment and oncogenic processes that define the biology and heterogeneity of human cancers. In glioblastoma (GBM), recent molecular profiling approaches distinguished several disease subtypes driven by distinct molecular, epigenetic and mutational mechanisms, leading to formation of proneural, neural, classical and mesenchymal tumours. Moreover, molecularly distinct clonal cellular lineages co-exist within individual GBM lesions, where they differentiate according to distinct stem cell hierarchies resulting in several facets of tumour heterogeneity and the related potential for intercellular interactions. Glioma stem cells (GSCs) may carry signatures of either proneural or mesenchymal GBM subtypes and differ in several biological characteristics that are, at least in part, represented by the output and repertoire of EV production (vesiculome). We report that vesiculomes differ between known GBM subtypes. EVs may also reflect and influence the equilibrium of the stem cell hierarchy, contain oncogenic drivers and modulate the microenvironment (vascular niche). The GBM/GSC subtype-specific differentials in EV cargo of proteins, transcripts, microRNA and DNA may enable detection of the dynamics of the stem cell compartment and result in biological effects that remain to be fully characterized.
                Bookmark

                Author and article information

                Journal
                J Extracell Vesicles
                J Extracell Vesicles
                JEV
                Journal of Extracellular Vesicles
                Co-Action Publishing
                2001-3078
                27 September 2016
                2016
                : 5
                : 10.3402/jev.v5.33109
                Affiliations
                [1 ]Child Health and Human Development Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
                [2 ]Department of Pediatrics, Biochemistry and Experimental Medicine McGill University, Child Health and Human Development Program, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
                [3 ]Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
                Author notes
                Article
                33109
                10.3402/jev.v5.33109
                5040817
                27680302
                40a3d273-9218-43a9-a6ec-f00ef88d2d56
                © 2016 Brian Meehan et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Letter to the Editor

                Comments

                Comment on this article