7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A kinase-regulated mechanism controls CFTR channel gating by disrupting bivalent PDZ domain interactions

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dynamic regulation of ion channels is critical for maintaining fluid balance in epithelial tissues. Cystic fibrosis, a genetic disease characterized by impaired fluid transport in epithelial tissues, is caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity. Recent studies have shown that binding of PSD-95/Dlg/ZO-1 (PDZ) domain proteins to CFTR is important for retaining it at the apical membrane and for regulating its channel activity. Here, we describe a phosphorylation mechanism that regulates CFTR channel activity, which is mediated by PDZ domains. The Na+/H+ exchanger regulatory factor (NHERF) binds to CFTR and increases its open probability (Po). Protein kinase C disrupts the stimulatory effect of NHERF on CFTR channel Po. Phosphorylation by PKC of Ser-162 in the PDZ2 domain of NHERF is critical for this functional effect. Furthermore, a mutation in PDZ2 that mimics phosphorylation decreases CFTR binding and disrupts the ability of NHERF PDZ1-2 to stimulate CFTR channel Po. Our results identify a role for PKC and suggest that phosphorylation of NHERF PDZ2 domain may be an important mechanism for regulating CFTR channel activity.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction.

          To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PDZ domains and the organization of supramolecular complexes.

            PDZ domains are modular protein interaction domains that bind in a sequence-specific fashion to short C-terminal peptides or internal peptides that fold in a beta-finger. The diversity of PDZ binding specificities can be explained by variable amino acids lining the peptide-binding groove of the PDZ domain. Abundantly represented in Caenorhabditis elegans, Drosophila melanogaster, and mammalian genomes, PDZ domains are frequently found in multiple copies or are associated with other protein-binding motifs in multidomain scaffold proteins. PDZ-containing proteins are typically involved in the assembly of supramolecular complexes that perform localized signaling functions at particular subcellular locations. Organization around a PDZ-based scaffold allows the stable localization of interacting proteins and enhances the rate and fidelity of signal transduction within the complex. Some PDZ-containing proteins are more dynamically regulated in distribution and may also be involved in the trafficking of interacting proteins within the cell.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure, catalytic mechanism, and evolution of the glutathione transferases.

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                May 01 2011
                August 05 2003
                July 24 2003
                August 05 2003
                : 100
                : 16
                : 9620-9625
                Article
                10.1073/pnas.1633250100
                170967
                12881487
                40a81c48-5ed4-48aa-84aa-bb0774d061bc
                © 2003
                History

                Comments

                Comment on this article