45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

      Science (New York, N.Y.)
      Animals, Bayes Theorem, Biological Evolution, Cell Nucleus, genetics, DNA, Mitochondrial, Gene Flow, Genetic Speciation, Genetic Variation, Genome, Haplotypes, Hybridization, Genetic, Molecular Sequence Data, Multilocus Sequence Typing, Phylogeny, Ursidae, classification

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.

            A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source-sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and evolutionary history of melanism in North American gray wolves.

              Morphological diversity within closely related species is an essential aspect of evolution and adaptation. Mutations in the Melanocortin 1 receptor (Mc1r) gene contribute to pigmentary diversity in natural populations of fish, birds, and many mammals. However, melanism in the gray wolf, Canis lupus, is caused by a different melanocortin pathway component, the K locus, that encodes a beta-defensin protein that acts as an alternative ligand for Mc1r. We show that the melanistic K locus mutation in North American wolves derives from past hybridization with domestic dogs, has risen to high frequency in forested habitats, and exhibits a molecular signature of positive selection. The same mutation also causes melanism in the coyote, Canis latrans, and in Italian gray wolves, and hence our results demonstrate how traits selected in domesticated species can influence the morphological diversity of their wild relatives.
                Bookmark

                Author and article information

                Comments

                Comment on this article