29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Defective Gp130-Mediated Signal Transducer and Activator of Transcription (Stat) Signaling Results in Degenerative Joint Disease, Gastrointestinal Ulceration, and Failure of Uterine Implantation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The receptor subunit gp130 transduces multiple cell type–specific activities of the leukemia inhibitory factor (LIF)/interleukin (IL)-6 family of cytokines through the signal transducer and activator of transcription (STAT) and src homology 2 domain–bearing protein tyrosine phosphatase (SHP)-2/ras/Erk pathways. To define STAT-dependent physiological responses, we generated mice with a COOH-terminal gp130 ΔSTAT “knock-in” mutation which deleted all STAT-binding sites. gp130 ΔSTAT mice phenocopyed mice deficient for IL-6 (impaired humoral and mucosal immune and hepatic acute phase responses) and LIF (failure of blastocyst implantation). However, unlike mice with null mutations in any of the components in the gp130 signaling pathway, gp130 ΔSTAT mice also displayed gastrointestinal ulceration and a severe joint disease with features of chronic synovitis, cartilaginous metaplasia, and degradation of the articular cartilage. Mitogenic hyperresponsiveness of synovial cells to the LIF/IL-6 family of cyto-kines was caused by sustained gp130-mediated SHP-2/ras/Erk activation due to impaired STAT-mediated induction of suppressor of cytokine signaling (SOCS) proteins which normally limits gp130 signaling. Therefore, the joint pathology in gp130 ΔSTAT mice is likely to arise from the disturbance of the otherwise balanced activation of the SHP-2/ras/Erk and STAT signaling cascades emanating from gp130.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.

          The propagation of embryonic stem (ES) cells in an undifferentiated pluripotent state is dependent on leukemia inhibitory factor (LIF) or related cytokines. These factors act through receptor complexes containing the signal transducer gp130. The downstream mechanisms that lead to ES cell self-renewal have not been delineated, however. In this study, chimeric receptors were introduced into ES cells. Biochemical and functional studies of transfected cells demonstrated a requirement for engagement and activation of the latent trancription factor STAT3. Detailed mutational analyses unexpectedly revealed that the four STAT3 docking sites in gp130 are not functionally equivalent. The role of STAT3 was then investigated using the dominant interfering mutant, STAT3F. ES cells that expressed this molecule constitutively could not be isolated. An episomal supertransfection strategy was therefore used to enable the consequences of STAT3F expression to be examined. In addition, an inducible STAT3F transgene was generated. In both cases, expression of STAT3F in ES cells growing in the presence of LIF specifically abrogated self-renewal and promoted differentiation. These complementary approaches establish that STAT3 plays a central role in the maintenance of the pluripotential stem cell phenotype. This contrasts with the involvement of STAT3 in the induction of differentiation in somatic cell types. Cell type-specific interpretation of STAT3 activation thus appears to be pivotal to the diverse developmental effects of the LIF family of cytokines. Identification of STAT3 as a key transcriptional determinant of ES cell self-renewal represents a first step in the molecular characterization of pluripotency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gp130 and the interleukin-6 family of cytokines.

            Receptors for most interleukins and cytokines that regulate immune and hematopoietic systems belong to the class I cytokine receptor family. These molecules form multichain receptor complexes in order to exhibit high-affinity binding to, and mediate biological functions of, their respective cytokines. In most cases, these functional receptor complexes share common signal transducing receptor components that are also in the class I cytokine receptor family, i.e. gp130, common beta, and common gamma molecules. Interleukin-6 and related cytokines, interleukin-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1 are all pleiotropic and exhibit overlapping biological functions. Functional receptor complexes for this interleukin-6 family of cytokines share gp130 as a component critical for signal transduction. Unlike cytokines sharing common beta and common gamma chains that mainly function in hematopoietic and lymphoid cell systems, the interleukin-6 family of cytokines function extensively outside these systems as well, e.g. from the cardiovascular to the nervous system, owing to ubiquitously expressed gp130. Stimulation of cells with the interleukin-6 family of cytokines triggers homo- or hetero-dimerization of gp130. Although gp130 and its dimer partners possess no intrinsic tyrosine kinase domain, the dimerization of gp130 leads to activation of associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews recent progress in the study of the interleukin-6 family of cytokines and gp130.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine.

              Mice lacking suppressor of cytokine signaling-1 (SOCS1) develop a complex fatal neonatal disease. In this study, SOCS1-/- mice were shown to exhibit excessive responses typical of those induced by interferon gamma (IFNgamma), were hyperresponsive to viral infection, and yielded macrophages with an enhanced IFNgamma-dependent capacity to kill L. major parasites. The complex disease in SOCS1-/- mice was prevented by administration of anti-IFNgamma antibodies and did not occur in SOCS1-/- mice also lacking the IFNgamma gene. Although IFNgamma is essential for resistance to a variety of infections, the potential toxic action of IFNgamma, particularly in neonatal mice, appears to require regulation. Our data indicate that SOCS1 is a key modulator of IFNgamma action, allowing the protective effects of this cytokine to occur without the risk of associated pathological responses.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                16 July 2001
                : 194
                : 2
                : 189-204
                Affiliations
                [a ]Ludwig Institute for Cancer Research, PO Royal Melbourne Hospital, VIC 3050, Australia
                [b ]The Walter and Eliza Hall Institute, PO Royal Melbourne Hospital, VIC 3050, Australia
                [c ]Department of Pathology, Peter MacCallum Institute, East Melbourne VIC 3002, Australia
                [d ]Department of Pathology, University of Sydney, Sydney, NSW 2006, Australia
                [e ]Department of Surgery, The University of Melbourne Parkville, VIC 3052, Australia
                Article
                001604
                10.1084/jem.194.2.189
                2193459
                11457894
                40af51a0-d264-4590-98b9-ec4268f370a7
                © 2001 The Rockefeller University Press
                History
                : 25 September 2000
                : 31 May 2001
                : 12 June 2001
                Categories
                Original Article

                Medicine
                signal transduction,stat,gene targeting,interleukin,infertility
                Medicine
                signal transduction, stat, gene targeting, interleukin, infertility

                Comments

                Comment on this article