28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Genetic Integrity of the Ex Situ Population of the European Wildcat ( Felis silvestris silvestris) Is Seriously Threatened by Introgression from Domestic Cats ( Felis silvestris catus)

      research-article
      1 , 2 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies on the genetic diversity and relatedness of zoo populations are crucial for implementing successful breeding programmes. The European wildcat, Felis s. silvestris, is subject to intensive conservation measures, including captive breeding and reintroduction. We here present the first systematic genetic analysis of the captive population of Felis s. silvestris in comparison with a natural wild population. We used microsatellites and mtDNA sequencing to assess genetic diversity, structure and integrity of the ex situ population. Our results show that the ex situ population of the European wildcat is highly structured and that it has a higher genetic diversity than the studied wild population. Some genetic clusters matched the breeding lines of certain zoos or groups of zoos that often exchanged individuals. Two mitochondrial haplotype groups were detected in the in situ populations, one of which was closely related to the most common haplotype found in domestic cats, suggesting past introgression in the wild. Although native haplotypes were also found in the captive population, the majority (68%) of captive individuals shared a common mtDNA haplotype with the domestic cat ( Felis s. catus). Only six captive individuals (7.7%) were assigned as wildcats in the STRUCTURE analysis (at K = 2), two of which had domestic cat mtDNA haplotypes and only two captive individuals were assigned as purebred wildcats by NewHybrids. These results suggest that the high genetic diversity of the captive population has been caused by admixture with domestic cats. Therefore, the captive population cannot be recommended for further breeding and reintroduction.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.

          Procedures utilizing Chelex 100 chelating resin have been developed for extracting DNA from forensic-type samples for use with the PCR. The procedures are simple, rapid, involve no organic solvents and do not require multiple tube transfers for most types of samples. The extraction of DNA from semen and very small bloodstains using Chelex 100 is as efficient or more efficient than using proteinase K and phenol-chloroform extraction. DNA extracted from bloodstains seems less prone to contain PCR inhibitors when prepared by this method. The Chelex method has been used with amplification and typing at the HLA DQ alpha locus to obtain the DQ alpha genotypes of many different types of samples, including whole blood, bloodstains, seminal stains, buccal swabs, hair and post-coital samples. The results of a concordance study are presented in which the DQ alpha genotypes of 84 samples prepared using Chelex or using conventional phenol-chloroform extraction are compared. The genotypes obtained using the two different extraction methods were identical for all samples tested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity.

            We review commonly used population definitions under both the ecological paradigm (which emphasizes demographic cohesion) and the evolutionary paradigm (which emphasizes reproductive cohesion) and find that none are truly operational. We suggest several quantitative criteria that might be used to determine when groups of individuals are different enough to be considered 'populations'. Units for these criteria are migration rate (m) for the ecological paradigm and migrants per generation (Nm) for the evolutionary paradigm. These criteria are then evaluated by applying analytical methods to simulated genetic data for a finite island model. Under the standard parameter set that includes L = 20 High mutation (microsatellite-like) loci and samples of S = 50 individuals from each of n = 4 subpopulations, power to detect departures from panmixia was very high ( approximately 100%; P < 0.001) even with high gene flow (Nm = 25). A new method, comparing the number of correct population assignments with the random expectation, performed as well as a multilocus contingency test and warrants further consideration. Use of Low mutation (allozyme-like) markers reduced power more than did halving S or L. Under the standard parameter set, power to detect restricted gene flow below a certain level X (H(0): Nm < X) can also be high, provided that true Nm < or = 0.5X. Developing the appropriate test criterion, however, requires assumptions about several key parameters that are difficult to estimate in most natural populations. Methods that cluster individuals without using a priori sampling information detected the true number of populations only under conditions of moderate or low gene flow (Nm < or = 5), and power dropped sharply with smaller samples of loci and individuals. A simple algorithm based on a multilocus contingency test of allele frequencies in pairs of samples has high power to detect the true number of populations even with Nm = 25 but requires more rigorous statistical evaluation. The ecological paradigm remains challenging for evaluations using genetic markers, because the transition from demographic dependence to independence occurs in a region of high migration where genetic methods have relatively little power. Some recent theoretical developments and continued advances in computational power provide hope that this situation may change in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic adaptation to captivity in species conservation programs.

              As wild environments are often inhospitable, many species have to be captive-bred to save them from extinction. In captivity, species adapt genetically to the captive environment and these genetic adaptations are overwhelmingly deleterious when populations are returned to wild environments. I review empirical evidence on (i) the genetic basis of adaptive changes in captivity, (ii) factors affecting the extent of genetic adaptation to captivity, and (iii) means for minimizing its deleterious impacts. Genetic adaptation to captivity is primarily due to rare alleles that in the wild were deleterious and partially recessive. The extent of adaptation to captivity depends upon selection intensity, genetic diversity, effective population size and number of generation in captivity, as predicted by quantitative genetic theory. Minimizing generations in captivity provides a highly effective means for minimizing genetic adaptation to captivity, but is not a practical option for most animal species. Population fragmentation and crossing replicate captive populations provide practical means for minimizing the deleterious effects of genetic adaptation to captivity upon populations reintroduced into the wild. Surprisingly, equalization of family sizes reduces the rate of genetic adaptation, but not the deleterious impacts upon reintroduced populations. Genetic adaptation to captivity is expected to have major effects on reintroduction success for species that have spent many generations in captivity. This issue deserves a much higher priority than it is currently receiving.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                27 August 2014
                : 9
                : 8
                : e106083
                Affiliations
                [1 ]Zoo Hoyerswerda, Hoyerswerda, Germany
                [2 ]Trier University, Department of Biogeography, Trier, Germany
                Texas A&M University, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AH KW. Performed the experiments: KW. Analyzed the data: KW AH. Contributed reagents/materials/analysis tools: KW AH. Wrote the paper: KW AH.

                Article
                PONE-D-13-51508
                10.1371/journal.pone.0106083
                4146591
                25162450
                40b20ba3-8ec4-44aa-82fa-f221416c7b58
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 February 2014
                : 31 July 2014
                Page count
                Pages: 12
                Funding
                This work is part of a PhD project that is financially supported by the Scholarship Programme of the German Federal Environmental Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Ecological Metrics
                Population Size
                Effective Population Size
                Evolutionary Biology
                Evolutionary Processes
                Hybridization
                Population Genetics
                Haplotypes
                Genetics
                Ecology and Environmental Sciences
                Conservation Science

                Uncategorized
                Uncategorized

                Comments

                Comment on this article