11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia Translated title: Padronização da técnica de ventilação pulmonar utilizando ventiladores com volume controlado em ratos com hérnia diafragmática congênita

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH) using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a) control (C); b) exposed to nitrofen with CDH (CDH); and c) exposed to nitrofen without CDH (N-). Fetuses of the three groups were randomly divided into the subgroups ventilated (V) and non-ventilated (N-V). Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW), total lung weight (TLW), left lung weight (LLW), ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p <0.05) and CDH (p <0.05), but no differences were found between the subgroups V and N-V (p> 0.05). The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05). The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

          Translated abstract

          OBJETIVO: padronizar uma técnica para ventilar fetos de rato com HDC usando um ventilador volume-controlado. MÉTODOS: ratas grávidas foram distribuídas em: a) Controle (C); e b) Expostos a Nitrofen com HDC e sem HDC (N-). Fetos dos três grupos foram divididos aleatoriamente em subgrupos ventilados (V) ou não ventilados (NV). Os fetos foram coletados no dia 21,5 da gestação, pesados e ventilados por 30 minutos usando um ventilador volume-controlado. A seguir os pulmões foram coletados para estudo histológico. Nós avaliamos: peso corporal (PC), peso pulmonar total (PPT), peso do pulmão esquerdo (PPE), razão PPT/PC e PPE/PC, histologia morfológica das vias aéreas e as causas das falhas da ventilação. RESULTADOS: PC, PPT, PPE, LLW, PPT/PC e PPE/PC foram maiores em C em relação a N- (p<0,05) e a HDC (p<0,05), mas não houve diferenças entre os subgrupos V e NV (p>0,05). A morfologia das vias aéreas pulmonares mostrou hipoplasia nos grupos N- e HDC, não havendo diferença entre V e NV (p<0,05). Os grupos C e N- puderam ser ventilados com sucesso usando o volume corrente de 75ìl, mas a falha de ventilação no grupo HDC só diminuiu quando ventilados com 50ìl. . CONCLUSÃO: a ventilação a volume de ratos com HDC por um curto período é possível e não altera a morfologia fetal ou pulmonar.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory response to oxygen and endotoxin in newborn rat lung ventilated with low tidal volume.

          Herein, we determined the contribution of mechanical ventilation, hyperoxia and inflammation, individually or combined, to the cytokine/chemokine response of the neonatal lung. Eight-day-old rats were ventilated for 8 h with low ( approximately 3.5 mL/kg), moderate ( approximately 12.5 mL/kg), or high ( approximately 25 mL/kg) tidal volumes (VT) and the cytokine/chemokine response was measured. Next, we tested whether low-VT ventilation with 50% oxygen or a preexisting inflammation induced by lipopolysaccharide (LPS) would modify this response. High-, moderate-, and low-VT ventilation significantly elevated CXCL-2 and IL-6 mRNA levels. Low-VT ventilation with 50% oxygen significantly increased IL-6 and CXCL-2 expression versus low-VT ventilation alone. LPS pretreatment combined with low-VT ventilation with 50% oxygen amplified IL-6 mRNA expression when compared with low VT alone or low VT + 50% O2 treatment. In contrast, low VT up-regulated CXCL-2 levels were reduced to nonventilated levels when LPS-treated newborn rats were ventilated with 50% oxygen. Thus, low-VT ventilation triggers the expression of acute phase cytokines and CXC chemokines in newborn rat lung, which is amplified by oxygen but not by a preexisting inflammation. Depending on the individual cytokine or chemokine, the combination of both oxygen and inflammation intensifies or abrogates the low VT-induced inflammatory response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lung tissue mechanics predict lung hypoplasia in a rabbit model for congenital diaphragmatic hernia.

            Several animal models have been proposed to study the pathophysiology of congenital diaphragmatic hernia (CDH). Surgical induction of CDH in fetal rabbits during the pseudoglandular phase has been shown to induce severe pulmonary hypoplasia, but functional studies in this model are scarce. We aimed to measure neonatal pulmonary impedance and related it to the severity of lung hypoplasia. CDH was surgically created in rabbits at 23 days of gestation. Following cesarean delivery at term (31 days) pups were subjected to measurement of total lung capacity (TLC), lung to body weight ratio (LBWR) and lung impedance by forced oscillation technique (FOT). Airway resistance (R(aw)), tissue elastance (H(L)), tissue damping (G(L)), and hysteresivity (eta) (G(L)/H(L)) were calculated from impedance data. Twelve CDH fetuses and 15 controls were available for final analysis. LBWR and TLC were significantly lower in the CDH group compared to gestational and age matched controls (P<0.001). R(aw), H(L), and G(L) were significantly increased in CCDH fetuses. eta and H(L) best reflected lung hypoplasia (LBWR) (r(2) = 0.42 and 0.43; P=0.001), indicating a dominant contribution of lung tissue mechanics to CDH-induced lung hypoplasia. We successfully introduced lung impedance measurement by FOT in neonatal rabbits. Following surgical induction of CDH in the pseudoglandular phase, they have, next to morphological evidence of pulmonary hypoplasia, changes in lung mechanics. Our results for lung tissue mechanics support the concept of delayed pulmonary tissue modeling. We propose to employ functional studies in future experiments when evaluating prenatal interventions aimed at reversing pulmonary hypoplasia. (c) 2007 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prenatal retinoic acid improves lung vascularization and VEGF expression in CDH rat.

              We sought to investigate the effects of antenatal retinoic acid on the pulmonary vasculature and vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) expression in a nitrofen-induced congenital diaphragmatic hernia (CDH) model.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                rcbc
                Revista do Colégio Brasileiro de Cirurgiões
                Rev. Col. Bras. Cir.
                Colégio Brasileiro de Cirurgiões (Rio de Janeiro )
                1809-4546
                June 2014
                : 41
                : 3
                : 181-187
                Affiliations
                [1 ] Universidade de São Paulo Brazil
                Article
                S0100-69912014000300181
                10.1590/S0100-69912014000300008
                40b9db9a-f8ad-438d-aa2a-7268f59792ce

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=0100-6991&lng=en
                Categories
                SURGERY

                Surgery
                Hernia, diaphragmatic/congenital,Ventilation,Models, animal,Rats,Nitrophenols,Hérnia diafragmática/congênita,Ventilação,Modelos animais,Ratos,Nitrofenóis

                Comments

                Comment on this article