22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H 2O 2 generation remains elusive. H 2O 2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H 2O 2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H 2O 2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10 −9 M BPA and evaluated Nis and Duox mRNA levels, besides H 2O 2 generation. Similar to that found in vivo, BPA treatment also led to increased H 2O 2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving.

          In studies to determine whether Saccharomyces cerevisiae produced estrogens, the organism was grown in culture media prepared using distilled water autoclaved in polycarbonate flasks. The yeast-conditioned media showed the presence of a substance that competed with [3H]estradiol for binding to estrogen receptors (ER) from rat uterus. However, it soon became clear that the estrogenic substance in the conditioned media was not a product of the yeast grown in culture, but was leached out of the polycarbonate flasks during the autoclaving procedure. [3H]Estradiol displacement activity was monitored by ER RRA, and the active substance was purified from autoclaved medium using a series of HPLC steps. The final purified product was identified as bisphenol-A (BPA) by nuclear magnetic resonance spectroscopy and mass spectrometry. BPA could also be identified in distilled water autoclaved in polycarbonate flasks without the requirement of either the organism or the constituents of the culture medium. Authentic BPA was active in competitive RRAs, demonstrating an affinity approximately 1:2000 that of estradiol for ER. In functional assays, BPA (10-25 nM) induced progesterone receptors in cultured human mammary cancer cells (MCF-7) at a potency of approximately 1:5000 compared to that of estradiol. The BPA effect on PR induction was blocked by tamoxifen. In addition, BPA (25 nM) increased the rate of proliferation of MCF-7 cells assessed by [3H]thymidine incorporation. Thus, BPA exhibited estrogenic activity by both RRA and two functional bioresponse assays. Finally, MCF-7 cells grown in media prepared with water autoclaved in polycarbonate exhibited higher progesterone receptor levels than cells.grown in media prepared with water autoclaved in glass, suggesting an estrogenic effect of the water autoclaved in polycarbonate. Our findings raise the possibility that unsuspected estrogenic activity in the form of BPA may have an impact on experiments employing media autoclaved in polycarbonate flasks. It remains to be determined whether BPA derived from consumer products manufactured from polycarbonate could significantly contribute to the pool of estrogenic substances in the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Sodium/Iodide Symporter (NIS): Molecular Physiology and Preclinical and Clinical Applications

            Active iodide (I − ) transport in both the thyroid and some extrathyroidal tissues is mediated by the N a + /I − symporter (NIS). In the thyroid, NIS-mediated I − uptake plays a pivotal role in thyroid hormone (TH) biosynthesis. THs are key during embryonic and postembryonic development and critical for cell metabolism at all stages of life. The molecular characterization of NIS in 1996 and the use of radioactive I − isotopes have led to significan advances in the diagnosis and treatment of thyroid cancer and provide the molecular basis for studies aimed at extending the use of radioiodide treatment in extrathyroidal malignancies. This review focuses on the most recent finding on I − homeostasis and I − transport deficiency-causin NIS mutations, as well as current knowledge of the structure/function properties of NIS and NIS regulatory mechanisms. We also discuss employing NIS as a reporter gene using viral vectors and stem cells in imaging, diagnostic, and therapeutic procedures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent.

              Dual oxidase 2 (DUOX2), an NADPH:O(2) oxidoreductase flavoprotein, is a component of the thyroid H(2)O(2) generator crucial for hormone synthesis at the apical membrane. Mutations in DUOX2 produce congenital hypothyroidism in humans. However, no functional DUOX-based NADPH oxidase has ever been reconstituted at the plasma membrane of transfected cells. It has been proposed that DUOX retention in the endoplasmatic reticulum (ER) of heterologous systems is due to the lack of an unidentified component required for functional maturation of the enzyme. By data mining of a massively parallel signature sequencing tissue expression data base, we identified an uncharacterized gene named DUOX maturation factor (DUOXA2) arranged head-to-head to and co-expressed with DUOX2. A paralog (DUOXA1) was similarly linked to DUOX1. The genomic rearrangement leading to linkage of ancient DUOX and DUOXA genes could be traced back before the divergence of echinoderms. We demonstrate that co-expression of DUOXA2, an ER-resident transmembrane protein, allows ER-to-Golgi transition, maturation, and translocation to the plasma membrane of functional DUOX2 in a heterologous system. The identification of DUOXA genes has important implications for studies of the molecular mechanisms controlling DUOX expression and the molecular genetics of congenital hypothyroidism.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                November 2018
                25 September 2018
                : 7
                : 11
                : 1196-1207
                Affiliations
                [1 ]Laboratory of Endocrine Physiology Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
                [2 ]NUMPEX Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
                [3 ]Laboratory of Molecular Radiobiology Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
                Author notes
                Correspondence should be addressed to A C F Ferreira: andclauf@ 123456yahoo.com.br
                Article
                EC180348
                10.1530/EC-18-0348
                6215800
                30352396
                40bd9ed9-fbb7-4379-adfc-15292e41aac9
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 19 September 2018
                : 25 September 2018
                Categories
                Research

                bisphenol a,endocrine disruptor,reactive oxygen species,hydrogen peroxide,dual oxidase,thyroperoxidase,sodium-iodide symporter,iodide,thyroid

                Comments

                Comment on this article