5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of PLCβ1 enhances endocannabinoid mobilization to restore hippocampal spike-timing-dependent potentiation and contextual fear memory impaired by Alzheimer’s amyloidosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Accumulation of amyloid beta oligomers (AβO) in Alzheimer’s disease (AD) impairs hippocampal long-term potentiation (LTP), leading to memory deficits. Thus, identifying the molecular targets of AβO involved in LTP inhibition is critical for developing therapeutics for AD. Endocannabinoid (eCB) synthesis and release, a process collectively called eCB mobilization by hippocampal CA1 pyramidal cells, is known to facilitate LTP induction. eCB can be mobilized either by postsynaptic depolarization in an intracellular Ca 2+ concentration ([Ca 2+] i)-dependent pathway or by group 1 metabotropic glutamate receptor (mGluR) activation in a phospholipase Cβ (PLCβ)-dependent pathway. Moreover, group 1 mGluR activation during postsynaptic depolarization, which is likely to occur in vivo during memory processing, can cause synergistic enhancement of eCB (S-eCB) mobilization in a PLCβ-dependent pathway. Although AβO has been shown to disrupt [Ca 2+] i-dependent eCB mobilization, the effect of AβO on PLCβ-dependent S-eCB mobilization and its association with LTP and hippocampus-dependent memory impairments in AD is unknown.

          Methods

          We used in vitro whole-cell patch-clamp recordings and western blot analyses to investigate the effect of AβO on PLCβ protein levels, PLCβ-dependent S-eCB mobilization, and spike-timing-dependent potentiation (tLTP) in AβO-treated rat hippocampal slices in vitro. In addition, we assessed the relationship between PLCβ protein levels and hippocampus-dependent memory impairment by performing a contextual fear memory task in vivo in the 5XFAD mouse model of AD.

          Results

          We found that AβO treatment in rat hippocampal slices in vitro decreased hippocampal PLCβ1 protein levels and disrupted S-eCB mobilization, as measured by western blot analysis and in vitro whole-cell patch-clamp recordings. This consequently led to the impairment of NMDA receptor (NMDAR)-mediated tLTP at CA3-CA1 excitatory synapses in AβO-treated rat hippocampal slices in vitro. Application of the PLCβ activator, m-3M3FBS, in rat hippocampal slices reinstated PLCβ1 protein levels to fully restore S-eCB mobilization and NMDAR-mediated tLTP. In addition, direct hippocampal injection of m-3M3FBS in 5XFAD mice reinstated PLCβ1 protein levels to those observed in wild type control mice and fully restored hippocampus-dependent contextual fear memory in vivo in 5XFAD mice.

          Conclusion

          We suggest that these results might be the consequence of memory impairment in AD by disrupting S-eCB mobilization. Therefore, we propose that PLCβ-dependent S-eCB mobilization could provide a new therapeutic strategy for treating memory deficits in AD.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: not found
          • Article: not found

          Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.

            It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid beta-peptide (Abeta) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Abeta in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Abeta production and Abeta clearance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs.

              Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs. These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons.
                Bookmark

                Author and article information

                Contributors
                jkwag@korea.ac.kr
                Journal
                Alzheimers Res Ther
                Alzheimers Res Ther
                Alzheimer's Research & Therapy
                BioMed Central (London )
                1758-9193
                8 October 2021
                8 October 2021
                2021
                : 13
                : 165
                Affiliations
                GRID grid.222754.4, ISNI 0000 0001 0840 2678, Department of Brain and Cognitive Engineering, , Korea University, ; 145 Anam-ro, Seongbuk-gu, Seoul, South Korea
                Author information
                http://orcid.org/0000-0002-0091-6532
                Article
                901
                10.1186/s13195-021-00901-9
                8501622
                34625112
                40c233cd-d6f1-4087-bcfe-b358098c854b
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 14 April 2021
                : 12 September 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003710, Korea Health Industry Development Institute;
                Award ID: HI19C0646
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: NRF-2019M3E5D2A01058328
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Neurology
                alzheimer’s disease,hippocampus,endocannabinoid mobilization,plcβ1,long-term potentiation,contextual fear memory

                Comments

                Comment on this article