27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rnd1 and Rnd3 targeting to lipid raft is required for p190 RhoGAP activation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The N-terminal region is the lipid raft–targeting determinant. A novel regulatory mechanism is found by which Rnd proteins function as RhoA antagonists, as is a striking mechanism by which differential membrane targeting governs activities of G proteins having similarities in effector interaction.

          Abstract

          The Rnd proteins Rnd1, Rnd2, and Rnd3/RhoE are well known as key regulators of the actin cytoskeleton in various cell types, but they comprise a distinct subgroup of the Rho family in that they are GTP bound and constitutively active. Functional differences of the Rnd proteins in RhoA inhibition signaling have been reported in various cell types. Rnd1 and Rnd3 antagonize RhoA signaling by activating p190 RhoGAP, whereas Rnd2 does not. However, all the members of the Rnd family have been reported to bind directly to p190 RhoGAP and equally induce activation of p190 RhoGAP in vitro, and there is no evidence that accounts for the functional difference of the Rnd proteins in RhoA inhibition signaling. Here we report the role of the N-terminal region in signaling. Rnd1 and Rnd3, but not Rnd2, have a KERRA (Lys-Glu-Arg-Arg-Ala) sequence of amino acids in their N-terminus, which functions as the lipid raft-targeting determinant. The sequence mediates the lipid raft targeting of p190 RhoGAP correlated with its activation. Overall, our results demonstrate a novel regulatory mechanism by which differential membrane targeting governs activities of Rnd proteins to function as RhoA antagonists.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          All ras proteins are polyisoprenylated but only some are palmitoylated.

          The C-terminal CAAX motif of the yeast mating factors is modified by proteolysis to remove the three terminal amino acids (-AAX) leaving a C-terminal cysteine residue that is polyisoprenylated and carboxyl-methylated. Here we show that all ras proteins are polyisoprenylated on their C-terminal cysteine (Cys186). Mutational analysis shows palmitoylation does not take place on Cys186 as previously thought but on cysteine residues contained in the hypervariable domain of some ras proteins. The major expressed form of c-K-ras (exon 4B) does not have a cysteine residue immediately upstream of Cys186 and is not palmitoylated. Polyisoprenylated but nonpalmitoylated H-ras proteins are biologically active and associate weakly with cell membranes. Palmitoylation increases the avidity of this binding and enhances their transforming activity. Polyisoprenylation is essential for biological activity as inhibiting the biosynthesis of polyisoprenoids abolishes membrane association of p21ras.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification.

            Rho GTPases (20 human members) comprise a major branch of the Ras superfamily of small GTPases, and aberrant Rho GTPase function has been implicated in oncogenesis and other human diseases. Although many of our current concepts of Rho GTPases are based on the three classical members (RhoA, Rac1, and Cdc42), recent studies have revealed the diversity of biological functions mediated by other family members. A key basis for the functional diversity of Rho GTPases is their association with distinct subcellular compartments, which is dictated in part by three posttranslational modifications signaled by their carboxyl-terminal CAAX (where C represents cysteine, A is an aliphatic amino acid, and X is a terminal amino acid) tetrapeptide motifs. CAAX motifs are substrates for the prenyltransferase-catalyzed addition of either farnesyl or geranylgeranyl isoprenoid lipids, Rce1-catalyzed endoproteolytic cleavage of the AAX amino acids, and Icmt-catalyzed carboxyl methylation of the isoprenylcysteine. We utilized pharmacologic, biochemical, and genetic approaches to determine the sequence requirements and roles of CAAX signal modifications in dictating the subcellular locations and functions of the Rho GTPase family. Although the classical Rho GTPases are modified by geranylgeranylation, we found that a majority of the other Rho GTPases are substrates for farnesyltransferase. We found that the membrane association and/or function of Rho GTPases are differentially dependent on Rce1- and Icmt-mediated modifications. Our results further delineate the sequence requirements for prenyltransferase specificity and functional roles for protein prenylation in Rho GTPase function. We conclude that a majority of Rho GTPases are targets for pharmacologic inhibitors of farnesyltransferase, Rce1, and Icmt.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrins regulate Rac targeting by internalization of membrane domains.

              Translocation of the small GTP-binding protein Rac1 to the cell plasma membrane is essential for activating downstream effectors and requires integrin-mediated adhesion of cells to extracellular matrix. We report that active Rac1 binds preferentially to low-density, cholesterol-rich membranes, and specificity is determined at least in part by membrane lipids. Cell detachment triggered internalization of plasma membrane cholesterol and lipid raft markers. Preventing internalization maintained Rac1 membrane targeting and effector activation in nonadherent cells. Regulation of lipid rafts by integrin signals may regulate the location of membrane domains such as lipid rafts and thereby control domain-specific signaling events in anchorage-dependent cells.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 April 2012
                : 23
                : 8
                : 1593-1604
                Affiliations
                Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
                Nagoya University
                Author notes

                The authors declare no conflict of interest.

                *Address correspondence to: Izumi Oinuma ( izu-oinuma@ 123456lif.kyoto-u.ac.jp ).
                Article
                E11-11-0900
                10.1091/mbc.E11-11-0900
                3327318
                22357615
                40c24202-215c-4bd1-afd7-c92ae2661f5c
                © 2012 Oinuma et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 04 November 2011
                : 20 January 2012
                : 16 February 2012
                Categories
                Articles
                Signaling

                Molecular biology
                Molecular biology

                Comments

                Comment on this article