58
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Genome-Wide Screen for Genetic Variants That Modify the Recruitment of REST to Its Target Genes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increasing numbers of human diseases are being linked to genetic variants, but our understanding of the mechanistic links leading from DNA sequence to disease phenotype is limited. The majority of disease-causing nucleotide variants fall within the non-protein-coding portion of the genome, making it likely that they act by altering gene regulatory sequences. We hypothesised that SNPs within the binding sites of the transcriptional repressor REST alter the degree of repression of target genes. Given that changes in the effective concentration of REST contribute to several pathologies—various cancers, Huntington's disease, cardiac hypertrophy, vascular smooth muscle proliferation—these SNPs should alter disease-susceptibility in carriers. We devised a strategy to identify SNPs that affect the recruitment of REST to target genes through the alteration of its DNA recognition element, the RE1. A multi-step screen combining genetic, genomic, and experimental filters yielded 56 polymorphic RE1 sequences with robust and statistically significant differences of affinity between alleles. These SNPs have a considerable effect on the the functional recruitment of REST to DNA in a range of in vitro, reporter gene, and in vivo analyses. Furthermore, we observe allele-specific biases in deeply sequenced chromatin immunoprecipitation data, consistent with predicted differenes in RE1 affinity. Amongst the targets of polymorphic RE1 elements are important disease genes including NPPA, PTPRT, and CDH4. Thus, considerable genetic variation exists in the DNA motifs that connect gene regulatory networks. Recently available ChIP–seq data allow the annotation of human genetic polymorphisms with regulatory information to generate prior hypotheses about their disease-causing mechanism.

          Author Summary

          Common human diseases such as cancer, heart disease, or epilepsy have a genetic component that predisposes particular individuals to suffer from them. Huge sums have been invested to map the regions of the human genome where small DNA variations, or SNPs (“single-nucleotide polymorphisms”), determine the probability of developing these diseases. A major problem with this approach, however, is that, once the culprit SNPs are discovered, we know very little about how they cause disease—which is critical if we are to use this information to develop drugs and therapies. In this study, we demonstrate a new approach, employing functional maps of the human genome that have recently been published. We begin with regions of the genome recognised by a gene repressor protein—REST—that is involved in a number of important human diseases. Using information on where REST binds in the human genome, we predict and validate common DNA variations that increase or decrease this binding. By affecting how much REST is recruited to important genes, these variations may predispose or protect individuals from a number of diseases. Studies like this show how we can use genomic information to gain a deeper understanding of the genetics behind human disease.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.

          We have developed an online catalog of SNP-trait associations from published genome-wide association studies for use in investigating genomic characteristics of trait/disease-associated SNPs (TASs). Reported TASs were common [median risk allele frequency 36%, interquartile range (IQR) 21%-53%] and were associated with modest effect sizes [median odds ratio (OR) 1.33, IQR 1.20-1.61]. Among 20 genomic annotation sets, reported TASs were significantly overrepresented only in nonsynonymous sites [OR = 3.9 (2.2-7.0), p = 3.5 x 10(-7)] and 5kb-promoter regions [OR = 2.3 (1.5-3.6), p = 3 x 10(-4)] compared to SNPs randomly selected from genotyping arrays. Although 88% of TASs were intronic (45%) or intergenic (43%), TASs were not overrepresented in introns and were significantly depleted in intergenic regions [OR = 0.44 (0.34-0.58), p = 2.0 x 10(-9)]. Only slightly more TASs than expected by chance were predicted to be in regions under positive selection [OR = 1.3 (0.8-2.1), p = 0.2]. This new online resource, together with bioinformatic predictions of the underlying functionality at trait/disease-associated loci, is well-suited to guide future investigations of the role of common variants in complex disease etiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Variation in transcription factor binding among humans.

            Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses, nuclear factor kappaB (p65), were mapped in 10 lymphoblastoid cell lines, and 25 and 7.5% of the respective binding regions were found to differ between individuals. Binding differences were frequently associated with single-nucleotide polymorphisms and genomic structural variants, and these differences were often correlated with differences in gene expression, suggesting functional consequences of binding variation. Furthermore, comparing PolII binding between humans and chimpanzee suggests extensive divergence in TF binding. Our results indicate that many differences in individuals and species occur at the level of TF binding, and they provide insight into the genetic events responsible for these differences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.

              Huntingtin protein is mutated in Huntington disease. We previously reported that wild-type but not mutant huntingtin stimulates transcription of the gene encoding brain-derived neurotrophic factor (BDNF; ref. 2). Here we show that the neuron restrictive silencer element (NRSE) is the target of wild-type huntingtin activity on BDNF promoter II. Wild-type huntingtin inhibits the silencing activity of NRSE, increasing transcription of BDNF. We show that this effect occurs through cytoplasmic sequestering of repressor element-1 transcription factor/neuron restrictive silencer factor (REST/NRSF), the transcription factor that binds to NRSE. In contrast, aberrant accumulation of REST/NRSF in the nucleus is present in Huntington disease. We show that wild-type huntingtin coimmunoprecipitates with REST/NRSF and that less immunoprecipitated material is found in brain tissue with Huntington disease. We also report that wild-type huntingtin acts as a positive transcriptional regulator for other NRSE-containing genes involved in the maintenance of the neuronal phenotype. Consistently, loss of expression of NRSE-controlled neuronal genes is shown in cells, mice and human brain with Huntington disease. We conclude that wild-type huntingtin acts in the cytoplasm of neurons to regulate the availability of REST/NRSF to its nuclear NRSE-binding site and that this control is lost in the pathology of Huntington disease. These data identify a new mechanism by which mutation of huntingtin causes loss of transcription of neuronal genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                April 2012
                April 2012
                5 April 2012
                : 8
                : 4
                : e1002624
                Affiliations
                [1 ]Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Singapore, Singapore
                [2 ]Laboratory of Structural Biochemistry, Genome Institute of Singapore, Singapore, Singapore
                [3 ]Bioinformatics and Genomics Group, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain
                [4 ]Department of Biological Sciences, National University of Singapore, Singapore, Singapore
                Friedrich Miescher Institute for Biomedical Research, Switzerland
                Author notes

                ¤a: Current address: Bioinformatics and Genomics Group, Centre for Genomic Regulation (CRG) and UPF, Barcelona, Spain

                ¤b: Current address: Barcelona Supercomputing Center, Barcelona, Spain

                Conceived and designed the experiments: R Johnson, R Jauch, LW Stanton. Performed the experiments: N Richter, A Bhinge, SW Teng, SH Choo, LO Andrieux, C De Benedictis. Analyzed the data: R Johnson, GK Bogu, R Jauch. Wrote the paper: R Johnson, LW Stanton.

                Article
                PGENETICS-D-11-02485
                10.1371/journal.pgen.1002624
                3320604
                22496669
                40d1ad7e-2187-4daf-a472-bff8e32bf920
                Johnson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 15 November 2011
                : 12 February 2012
                Page count
                Pages: 13
                Categories
                Research Article
                Biology
                Computational Biology
                Genetics
                Genomics
                Medicine
                Cardiovascular
                Clinical Genetics
                Neurology

                Genetics
                Genetics

                Comments

                Comment on this article