+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased augmentation index in patients with Ehlers-Danlos syndrome


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Ehlers-Danlos Syndrome (EDS) comprises a heterogeneous group of diseases characterized by joint hypermobility, connective tissue friability, and vascular fragility. Reliable prognostic factors predicting vascular disease progression (e.g. arterial aneurysms, dissections, and ruptures) in EDS patients are still missing. Recently, applanation tonometry derived augmentation index (AIx), an indirect marker of arterial stiffness, has shown to be positively associated with progression of aortic disease in Marfan syndrome. In this study, we assessed aortic AIx in patients with EDS and matched healthy controls.


          We performed noninvasive applanation tonometry in 61 adults with EDS (43 women and 18 men aged 39.3 ± 14.6 years) and 61 age-, gender-, height-, and weight-matched healthy controls. Radial artery pulse waveforms were recorded and analyzed using the SphygmoCor System (AtCor Medical, Sydney, NSW, Australia). Calculated AIx was adjusted to a heart rate of 75/min. Groups were compared and association between AIx and EDS was determined by univariate and multivariate regression analysis.


          EDS patients were categorized in classical type EDS (34%), hypermobile type EDS (43%), vascular type EDS (5%), or remained unassignable (18%) due to overlapping features. EDS patients showed a significantly increased aortic AIx compared to healthy controls (22.8% ± 10.1 vs 14.8% ± 14.0, p < 0.001). EDS showed a positive association with AIx; independent of age, sex, height, blood pressure, medication, and pack years of smoking.


          Patients with EDS showed elevated AIx, indicating increased arterial stiffness when compared to healthy controls. Further investigations are needed in order to assess the prognostic value of increased AIx for cardiovascular outcomes in patients with EDS.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The 2017 international classification of the Ehlers-Danlos syndromes.

          The Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen-encoding genes, or in genes encoding collagen-modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes. © 2017 Wiley Periodicals, Inc.
            • Record: found
            • Abstract: found
            • Article: not found

            The influence of heart rate on augmentation index and central arterial pressure in humans.

            Arterial stiffness is an important determinant of cardiovascular risk. Augmentation index (AIx) is a measure of systemic arterial stiffness derived from the ascending aortic pressure waveform. The aim of the present study was to assess the effect of heart rate on AIx. We elected to use cardiac pacing rather than chronotropic drugs to minimize confounding effects on the systemic circulation and myocardial contractility. Twenty-two subjects (13 male) with a mean age of 63 years and permanent cardiac pacemakers in situ were studied. Pulse wave analysis was used to determine central arterial pressure waveforms, non-invasively, during incremental pacing (from 60 to 110 beats min-1), from which AIx and central blood pressure were calculated. Peripheral blood pressure was recorded non-invasively from the brachial artery. There was a significant, inverse, linear relationship between AIx and heart rate (r = -0.76; P < 0.001). For a 10 beats min-1 increment, AIx fell by around 4 %. Ejection duration and heart rate were also inversely related (r = -0. 51; P < 0.001). Peripheral systolic, diastolic and mean arterial pressure increased significantly during incremental pacing. Although central diastolic pressure increased significantly with pacing, central systolic pressure did not. There was a significant increase in the ratio of peripheral to central pulse pressure (P < 0.001), which was accounted for by the observed change in central pressure augmentation. These results demonstrate an inverse, linear relationship between AIx and heart rate. This is likely to be due to alterations in the timing of the reflected pressure wave, produced by changes in the absolute duration of systole. Consideration of wave reflection and aortic pressure augmentation may explain the lack of rise in central systolic pressure during incremental pacing despite an increase in peripheral pressure.
              • Record: found
              • Abstract: found
              • Article: not found

              Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform.

              Pressure wave reflection in the upper limb causes amplification of the arterial pulse so that radial systolic and pulse pressures are greater than in the ascending aorta. Wave transmission properties in the upper limbs (in contrast to the descending aorta and lower limbs) change little with age, disease, and drug therapy in adult humans. Such consistency has led to use of a generalized transfer function to synthesize the ascending aortic pressure pulse from the radial pulse. Validity of this approach was tested for estimation of aortic systolic, diastolic, pulse, and mean pressures from the radial pressure waveform. Ascending aortic and radial pressure waveforms were recorded simultaneously at cardiac surgery, before initiation of cardiopulmonary bypass, with matched, fluid-filled manometer systems in 62 patients under control conditions and during nitroglycerin infusion. Aortic pressure pulse waves, generated from the radial pulse, showed agreement with the measured aortic pulse waves with respect to systolic, diastolic, pulse, and mean pressures, with mean differences <1 mm Hg. Control differences in Bland-Altman plots for mean+/-SD in mm Hg were systolic, 0.0+/-4.4; diastolic, 0.6+/-1.7; pulse, -0.7+/-4.2; and mean pressure, -0.5+/-2.0. For nitroglycerin infusion, differences respectively were systolic, -0.2+/-4.3; diastolic, 0.6+/-1.7; pulse, -0.8+/-4.1; and mean pressure, -0.4+/-1.8. Differences were within specified limits of the Association for the Advancement of Medical Instrumentation SP10 criteria. In contrast, differences between recorded radial and aortic systolic and pulse pressures were well outside the criteria (respectively, 15.7+/-8.4 and 16.3+/-8.5 for control and 14.5+/-7.3 and 15.1+/-7.3 mm Hg for nitroglycerin). Use of a generalized transfer function to synthesize radial artery pressure waveforms can provide substantially equivalent values of aortic systolic, pulse, mean, and diastolic pressures.

                Author and article information

                BMC Cardiovasc Disord
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central (London )
                15 September 2020
                15 September 2020
                : 20
                : 417
                [1 ]GRID grid.412004.3, ISNI 0000 0004 0478 9977, Department of Pulmonology, , University Hospital Zurich, ; Rämistrasse 100, 8091 Zurich, Switzerland
                [2 ]GRID grid.412004.3, ISNI 0000 0004 0478 9977, Clinical and Interventional Angiology, , University Hospital Zurich, ; Zurich, Switzerland
                [3 ]GRID grid.412341.1, ISNI 0000 0001 0726 4330, Division of Metabolism and Children’s Research Center University Children’s Hospital Zurich, ; Zurich, Switzerland
                [4 ]GRID grid.7400.3, ISNI 0000 0004 1937 0650, Centre for Interdisciplinary Sleep Research, , University of Zurich, ; Zurich, Switzerland
                Author information
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                : 5 November 2019
                : 25 August 2020
                Funded by: FundRef http://dx.doi.org/10.13039/501100013363, Lunge Zürich;
                Award ID: xxxxx
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100013349, Lungenliga Schweiz;
                Award ID: xxxx
                Award Recipient :
                Research Article
                Custom metadata
                © The Author(s) 2020

                Cardiovascular Medicine
                ehlers-danlos syndrome,arterial stiffness,augmentation index,cardiovascular risk


                Comment on this article