4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Herpes Simplex Virus Type 1–Encoded miR-H2-3p Manipulates Cytosolic DNA–Stimulated Antiviral Innate Immune Response by Targeting DDX41

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herpes simplex virus type 1 (HSV-1), one of the human pathogens widely epidemic and transmitted among various groups of people in the world, often causes symptoms known as oral herpes or lifelong asymptomatic infection. HSV-1 employs many sophisticated strategies to escape host antiviral immune response based on its multiple coding proteins. However, the functions involved in the immune evasion of miRNAs encoded by HSV-1 during lytic (productive) infection remain poorly studied. Dual-luciferase reporter gene assay and bioinformatics revealed that Asp-Glu-Ala-Asp (DEAD)-box helicase 41 (DDX41), a cytosolic DNA sensor of the DNA-sensing pathway, was a putative direct target gene of HSV-1-encoded miR-H2-3p. The transfection of miR-H2-3p mimics inhibited the expression of DDX41 at the level of mRNA and protein, as well as the expression of interferon beta (IFN-β) and myxoma resistance protein I (MxI) induced by HSV-1 infection in THP-1 cells, and promoted the viral replication and its gene transcription. However, the transfection of miR-H2-3p inhibitor showed opposite effects. This finding indicated that HSV-1-encoded miR-H2-3p attenuated cytosolic DNA–stimulated antiviral immune response by manipulating host DNA sensor molecular DDX41 to enhance virus replication in cultured cells.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity of microRNA target selection in translational repression.

          MicroRNAs (miRNAs) are a class of noncoding RNAs found in organisms as evolutionarily distant as plants and mammals, yet most of the mRNAs they regulate are unknown. Here we show that the ability of an miRNA to translationally repress a target mRNA is largely dictated by the free energy of binding of the first eight nucleotides in the 5' region of the miRNA. However, G:U wobble base-pairing in this region interferes with activity beyond that predicted on the basis of thermodynamic stability. Furthermore, an mRNA can be simultaneously repressed by more than one miRNA species. The level of repression achieved is dependent on both the amount of mRNA and the amount of available miRNA complexes. Thus, predicted miRNA:mRNA interactions must be viewed in the context of other potential interactions and cellular conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome.

            Cytoplasmic DNA triggers activation of the innate immune system. Although 'downstream' signaling components have been characterized, the DNA-sensing components remain elusive. Here we present a systematic proteomics screen for proteins that associate with DNA, 'crossed' to a screen for transcripts induced by interferon-beta, which identified AIM2 as a candidate cytoplasmic DNA sensor. AIM2 showed specificity for double-stranded DNA. It also recruited the inflammasome adaptor ASC and localized to ASC 'speckles'. A decrease in AIM2 expression produced by RNA-mediated interference impaired DNA-induced maturation of interleukin 1beta in THP-1 human monocytic cells, which indicated that endogenous AIM2 is required for DNA recognition. Reconstitution of unresponsive HEK293 cells with AIM2, ASC, caspase-1 and interleukin 1beta showed that AIM2 was sufficient for inflammasome activation. Our data suggest that AIM2 is a cytoplasmic DNA sensor for the inflammasome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DDX41 recognizes bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response

              Induction of type I interferons by the bacterial secondary messengers cyclic-di-GMP (c-di-GMP) or cyclic-di-AMP (c-di-AMP) is dependent on a signaling axis involving the STING adaptor, TBK1 kinase and IRF3 transcription factor. Here we identified the helicase DEAD box polypeptide 41 (DDX41) as a pattern recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via shRNA in murine or human cells inhibited the induction of innate immune genes and resulted in defective STING, TBK1 and IRF3 activation in response to c-di-GMP or c-di-AMP. These results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by the DDX41 PRR, which complexes with STING to signal to TBK1-IRF3 and activate the interferon response.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                15 August 2019
                August 2019
                : 11
                : 8
                Affiliations
                [1 ]Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
                [2 ]Experimental Center for Medical Research, Kunming Medical University, Kunming 650500, China
                Author notes
                [* ]Correspondence: liqihan@ 123456imbcams.com.cn ; Tel.: +86-871-6833-5905
                Article
                viruses-11-00756
                10.3390/v11080756
                6723821
                31443275
                40dc03da-64c0-4ecb-896b-7535e5dd90c6
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Microbiology & Virology
                antiviral immune response,cytosolic dna sensor,hsv-1,mir-h2-3p
                Microbiology & Virology
                antiviral immune response, cytosolic dna sensor, hsv-1, mir-h2-3p

                Comments

                Comment on this article