3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of hospital spending on waiting times

      1 , 2 , 3
      Health Economics
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long waiting times have been a persistent policy issue in the United Kingdom that the COVID‐19 pandemic has exacerbated. This study analyses the causal effect of hospital spending on waiting times in England using a first‐differences panel approach and an instrumental variable strategy to deal with residual concerns for endogeneity. We use data from 2014 to 2019 on waiting times from general practitioner referral to treatment (RTT) measured at the level of local purchasers (known as Clinical Commissioning Groups). We find that increases in hospital spending by local purchasers of 1% reduce median RTT waiting time for patients whose pathway ends with a hospital admission (admitted pathway) by 0.6 days but the effect is not statistically significant at 5% level (only at the 10% level). We also find that higher hospital spending does not affect the RTT waiting time for patients whose pathway ends with a specialist consultation (non‐admitted pathway). Nor does higher spending have a statistically significant effect on the volume of elective activity for either pathway. Our findings suggest that higher spending is no guarantee of higher volumes and lower waiting times, and that additional mechanisms need to be put in place to ensure that increased spending benefits elective patients.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The impact of the COVID-19 pandemic on cancer deaths due to delays in diagnosis in England, UK: a national, population-based, modelling study

          Summary Background Since a national lockdown was introduced across the UK in March, 2020, in response to the COVID-19 pandemic, cancer screening has been suspended, routine diagnostic work deferred, and only urgent symptomatic cases prioritised for diagnostic intervention. In this study, we estimated the impact of delays in diagnosis on cancer survival outcomes in four major tumour types. Methods In this national population-based modelling study, we used linked English National Health Service (NHS) cancer registration and hospital administrative datasets for patients aged 15–84 years, diagnosed with breast, colorectal, and oesophageal cancer between Jan 1, 2010, and Dec 31, 2010, with follow-up data until Dec 31, 2014, and diagnosed with lung cancer between Jan 1, 2012, and Dec 31, 2012, with follow-up data until Dec 31, 2015. We use a routes-to-diagnosis framework to estimate the impact of diagnostic delays over a 12-month period from the commencement of physical distancing measures, on March 16, 2020, up to 1, 3, and 5 years after diagnosis. To model the subsequent impact of diagnostic delays on survival, we reallocated patients who were on screening and routine referral pathways to urgent and emergency pathways that are associated with more advanced stage of disease at diagnosis. We considered three reallocation scenarios representing the best to worst case scenarios and reflect actual changes in the diagnostic pathway being seen in the NHS, as of March 16, 2020, and estimated the impact on net survival at 1, 3, and 5 years after diagnosis to calculate the additional deaths that can be attributed to cancer, and the total years of life lost (YLLs) compared with pre-pandemic data. Findings We collected data for 32 583 patients with breast cancer, 24 975 with colorectal cancer, 6744 with oesophageal cancer, and 29 305 with lung cancer. Across the three different scenarios, compared with pre-pandemic figures, we estimate a 7·9–9·6% increase in the number of deaths due to breast cancer up to year 5 after diagnosis, corresponding to between 281 (95% CI 266–295) and 344 (329–358) additional deaths. For colorectal cancer, we estimate 1445 (1392–1591) to 1563 (1534–1592) additional deaths, a 15·3–16·6% increase; for lung cancer, 1235 (1220–1254) to 1372 (1343–1401) additional deaths, a 4·8–5·3% increase; and for oesophageal cancer, 330 (324–335) to 342 (336–348) additional deaths, 5·8–6·0% increase up to 5 years after diagnosis. For these four tumour types, these data correspond with 3291–3621 additional deaths across the scenarios within 5 years. The total additional YLLs across these cancers is estimated to be 59 204–63 229 years. Interpretation Substantial increases in the number of avoidable cancer deaths in England are to be expected as a result of diagnostic delays due to the COVID-19 pandemic in the UK. Urgent policy interventions are necessary, particularly the need to manage the backlog within routine diagnostic services to mitigate the expected impact of the COVID-19 pandemic on patients with cancer. Funding UK Research and Innovation Economic and Social Research Council.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Effect of delays in the 2-week-wait cancer referral pathway during the COVID-19 pandemic on cancer survival in the UK: a modelling study

            Background During the COVID-19 lockdown, referrals via the 2-week-wait urgent pathway for suspected cancer in England, UK, are reported to have decreased by up to 84%. We aimed to examine the impact of different scenarios of lockdown-accumulated backlog in cancer referrals on cancer survival, and the impact on survival per referred patient due to delayed referral versus risk of death from nosocomial infection with severe acute respiratory syndrome coronavirus 2. Methods In this modelling study, we used age-stratified and stage-stratified 10-year cancer survival estimates for patients in England, UK, for 20 common tumour types diagnosed in 2008–17 at age 30 years and older from Public Health England. We also used data for cancer diagnoses made via the 2-week-wait referral pathway in 2013–16 from the Cancer Waiting Times system from NHS Digital. We applied per-day hazard ratios (HRs) for cancer progression that we generated from observational studies of delay to treatment. We quantified the annual numbers of cancers at stage I–III diagnosed via the 2-week-wait pathway using 2-week-wait age-specific and stage-specific breakdowns. From these numbers, we estimated the aggregate number of lives and life-years lost in England for per-patient delays of 1–6 months in presentation, diagnosis, or cancer treatment, or a combination of these. We assessed three scenarios of a 3-month period of lockdown during which 25%, 50%, and 75% of the normal monthly volumes of symptomatic patients delayed their presentation until after lockdown. Using referral-to-diagnosis conversion rates and COVID-19 case-fatality rates, we also estimated the survival increment per patient referred. Findings Across England in 2013–16, an average of 6281 patients with stage I–III cancer were diagnosed via the 2-week-wait pathway per month, of whom 1691 (27%) would be predicted to die within 10 years from their disease. Delays in presentation via the 2-week-wait pathway over a 3-month lockdown period (with an average presentational delay of 2 months per patient) would result in 181 additional lives and 3316 life-years lost as a result of a backlog of referrals of 25%, 361 additional lives and 6632 life-years lost for a 50% backlog of referrals, and 542 additional lives and 9948 life-years lost for a 75% backlog in referrals. Compared with all diagnostics for the backlog being done in month 1 after lockdown, additional capacity across months 1–3 would result in 90 additional lives and 1662 live-years lost due to diagnostic delays for the 25% backlog scenario, 183 additional lives and 3362 life-years lost under the 50% backlog scenario, and 276 additional lives and 5075 life-years lost under the 75% backlog scenario. However, a delay in additional diagnostic capacity with provision spread across months 3–8 after lockdown would result in 401 additional lives and 7332 life-years lost due to diagnostic delays under the 25% backlog scenario, 811 additional lives and 14 873 life-years lost under the 50% backlog scenario, and 1231 additional lives and 22 635 life-years lost under the 75% backlog scenario. A 2-month delay in 2-week-wait investigatory referrals results in an estimated loss of between 0·0 and 0·7 life-years per referred patient, depending on age and tumour type. Interpretation Prompt provision of additional capacity to address the backlog of diagnostics will minimise deaths as a result of diagnostic delays that could add to those predicted due to expected presentational delays. Prioritisation of patient groups for whom delay would result in most life-years lost warrants consideration as an option for mitigating the aggregate burden of mortality in patients with cancer. Funding None.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Econometric Analysis of Panel Data.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Health Economics
                Health Economics
                Wiley
                1057-9230
                1099-1050
                November 2023
                July 09 2023
                November 2023
                : 32
                : 11
                : 2427-2445
                Affiliations
                [1 ] Erasmus School of Health Policy and Management Erasmus University Rotterdam The Netherlands
                [2 ] Centre for Health Economics University of York York UK
                [3 ] Department of Economics and Related Studies University of York York UK
                Article
                10.1002/hec.4735
                37424194
                40de442b-f9ea-4bc3-b22e-f6b6dd5b9578
                © 2023

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content468

                Cited by4

                Most referenced authors209