2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Word Embedding to Drug Repositioning

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Survey of clustering algorithms.

          Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Comparative Toxicogenomics Database's 10th year anniversary: update 2015

            Ten years ago, the Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) was developed out of a need to formalize, harmonize and centralize the information on numerous genes and proteins responding to environmental toxic agents across diverse species. CTD's initial approach was to facilitate comparisons of nucleotide and protein sequences of toxicologically significant genes by curating these sequences and electronically annotating them with chemical terms from their associated references. Since then, however, CTD has vastly expanded its scope to robustly represent a triad of chemical–gene, chemical–disease and gene–disease interactions that are manually curated from the scientific literature by professional biocurators using controlled vocabularies, ontologies and structured notation. Today, CTD includes 24 million toxicogenomic connections relating chemicals/drugs, genes/proteins, diseases, taxa, phenotypes, Gene Ontology annotations, pathways and interaction modules. In this 10th year anniversary update, we outline the evolution of CTD, including our increased data content, new ‘Pathway View’ visualization tool, enhanced curation practices, pilot chemical–phenotype results and impending exposure data set. The prototype database originally described in our first report has transformed into a sophisticated resource used actively today to help scientists develop and test hypotheses about the etiologies of environmentally influenced diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach

              The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases. Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent years, several such algorithms have been developed, some focusing on local network properties only, and others taking the complete network topology into account. Common to all approaches is the understanding that novel disease-associated candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates using diabetes type 1 as an example.
                Bookmark

                Author and article information

                Journal
                Journal of Biomedical Science and Engineering
                JBiSE
                Scientific Research Publishing, Inc,
                1937-6871
                1937-688X
                2016
                2016
                : 09
                : 01
                : 7-16
                Article
                10.4236/jbise.2016.91002
                40e64493-56bb-441c-b8cd-9652504d2cc3
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article