528
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Takifugu obscurus is a euryhaline fugu species very close to Takifugu rubripes and suitable for studying osmoregulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The genome sequence of the pufferfish Takifugu rubripes is an enormously useful tool in the molecular physiology of fish. Euryhaline fish that can survive both in freshwater (FW) and seawater (SW) are also very useful for studying fish physiology, especially osmoregulation. Recently we learned that there is a pufferfish, Takifugu obscurus, common name "mefugu" that migrates into FW to spawn. If T. obscurus is indeed a euryhaline fish and shares a high sequence homology with T. rubripes, it will become a superior animal model for studying the mechanism of osmoregulation. We have therefore determined its euryhalinity and phylogenetic relationship to the members of the Takifugu family.

          Results

          The following six Takifugu species were used for the analyses: T. obscurus, T. rubripes, T. niphobles, T. pardalis, T. poecilonotus, and T. porphyreus. When transferred to FW, only T. obscurus could survive while the others could not survive more than ten days in FW. During this course of FW adaptation, serum Na + concentration of T. obscurus decreased only slightly, but a rapid and large decrease occurred even in the case of T. niphobles, a peripheral fresh water species that is often seen in brackish river mouths. Phylogenetic analysis using nucleotide sequences of the mitochondrial 16S ribosomal RNA gene of each species indicated that the six Takifugu species are very closely related with each other.

          Conclusion

          T. obscurus is capable of adapting to both FW and SW. Its genomic sequence shares a very high homology with those of the other Takifugu species such that the existing Takifugu genomic information resources can be utilized. These properties make "mefugu", which has drawn little attention from animal physiologists until this study, a useful model animal for studying the molecular mechanism of maintaining body fluid homeostasis.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA2: molecular evolutionary genetics analysis software.

          We have developed a new software package, Molecular Evolutionary Genetics Analysis version 2 (MEGA2), for exploring and analyzing aligned DNA or protein sequences from an evolutionary perspective. MEGA2 vastly extends the capabilities of MEGA version 1 by: (1) facilitating analyses of large datasets; (2) enabling creation and analyses of groups of sequences; (3) enabling specification of domains and genes; (4) expanding the repertoire of statistical methods for molecular evolutionary studies; and (5) adding new modules for visual representation of input data and output results on the Microsoft Windows platform. http://www.megasoftware.net. s.kumar@asu.edu
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular biology of major components of chloride cells.

            Current understanding of chloride cells (CCs) is briefly reviewed with emphasis on molecular aspects of their channels, transporters and regulators. Seawater-type and freshwater-type CCs have been identified based on their shape, location and response to different ionic conditions. Among the freshwater-type CCs, subpopulations are emerging that are implicated in the uptake of Na(+), Cl(-) and Ca(2+), respectively, and can be distinguished by their shape of apical crypt and affinity for lectins. The major function of the seawater CC is transcellular secretion of Cl(-), which is accomplished by four major channels and transporters: (1). CFTR Cl(-) channel, (2). Na(+),K(+)-ATPase, (3). Na(+)/K(+)/2Cl(-) cotransporter and (4). a K(+) channel. The first three components have been cloned and characterized, but concerning the K(+) channel that is essential for the continued generation of the driving force by Na(+),K(+)-ATPase, only one candidate is identified. Although controversial, freshwater CCs seem to perform the uptake of Na(+), Cl(-) and Ca(2+) in a manner analogous to but slightly different from that seen in the absorptive epithelia of mammalian kidney and intestine since freshwater CCs face larger concentration gradients than ordinary epithelial cells. The components involved in these processes are beginning to be cloned, but their CC localization remains to be established definitively. The most important yet controversial issue is the mechanism of Na(+) uptake. Two models have been postulated: (i). the original one involves amiloride-sensitive electroneutral Na(+)/H(+) exchanger (NHE) with the driving force generated by Na(+),K(+)-ATPase and carbonic anhydrase (CA) and (ii). the current model suggests that Na(+) uptake occurs through an amiloride-sensitive epithelial sodium channel (ENaC) electrogenically coupled to H(+)-ATPase. While fish ENaC remains to be identified by molecular cloning and database mining, fish NHE has been cloned and shown to be highly expressed on the apical membrane of CCs, reviving the original model. The CC is also involved in acid-base regulation. Analysis using Osorezan dace (Tribolodon hakonensis) living in a pH 3.5 lake demonstrated marked inductions of Na(+),K(+)-ATPase, CA-II, NHE3, Na(+)/HCO(3)(-) cotransporter-1 and aquaporin-3 in the CCs on acidification, leading to a working hypothesis for the mechanism of Na(+) retention and acid-base regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer.

              Maintenance of ion balance requires that ionoregulatory epithelia modulate ion flux in response to internal or environmental osmotic challenges. We have explored the basis of this functional plasticity in the gills of the euryhaline killifish Fundulus heteroclitus. The expression patterns of several genes encoding ion transport proteins were quantified after transfer from near-isosmotic brackish water [10 parts/thousand (ppt)] to either freshwater (FW) or seawater (SW). Many changes in response to SW transfer were transient. Increased mRNA expression occurred 1 day after transfer for Na(+)-K(+)-ATPase-alpha(1a) (3-fold), Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) (3-fold), and glucocorticoid receptor (1.3-fold) and was paralleled by elevated Na(+)-K(+)-ATPase activity (2-fold). The transient increase in NKCC1 mRNA expression was followed by a later 2-fold rise in NKCC protein abundance. In contrast to the other genes studied in the present work, mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel generally remained elevated (2-fold) in SW. No change in protein abundance was detected, however, suggesting posttranscriptional regulation. The responses to FW transfer were quite different from those to SW transfer. In particular, FW transfer increased Na(+)-K(+)-ATPase-alpha(1a) mRNA expression and Na(+)-K(+)-ATPase activity to a greater extent than did SW transfer but had no effect on V-type H(+)-ATPase expression, supporting the current suggestion that killifish gills transport Na(+) via Na(+)/H(+) exchange. These findings demonstrate unique patterns of ion transporter expression in killifish gills after salinity transfer and illustrate important mechanisms of functional plasticity in ion-transporting epithelia.
                Bookmark

                Author and article information

                Journal
                BMC Physiol
                BMC Physiology
                BioMed Central (London )
                1472-6793
                2005
                20 December 2005
                : 5
                : 18
                Affiliations
                [1 ]Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
                [2 ]Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki Academy of Marine Science, Shimonoseki, Japan
                [3 ]Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan
                Article
                1472-6793-5-18
                10.1186/1472-6793-5-18
                1351200
                16364184
                40e6e65e-fa9f-40aa-a4fb-cd19e969439d
                Copyright © 2005 Kato et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 July 2005
                : 20 December 2005
                Categories
                Research Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article