167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators

      research-article
      1 , 2 , a , 1
      Nature Communications
      Nature Pub. Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells or photodetectors, reflection is an unwanted loss process. Many ways to reduce reflection from a substrate have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching and scattering from plasmonic nanoparticles. Here we present an entirely new concept that suppresses the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders designed to possess strongly substrate-coupled Mie resonances yields almost zero total reflectance over the entire spectral range from the ultraviolet to the near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states.

          Abstract

          Minimising reflection from the interface between materials is an important goal for optical devices such as solar cells or photodetectors. Spinelli et al. show almost total loss of reflection over a broad spectral range from a silicon surface using periodic arrays of sub-wavelength silicon nanocylinders.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays.

          Hydrogenated amorphous Si (a-Si:H) is an important solar cell material. Here we demonstrate the fabrication of a-Si:H nanowires (NWs) and nanocones (NCs), using an easily scalable and IC-compatible process. We also investigate the optical properties of these nanostructures. These a-Si:H nanostructures display greatly enhanced absorption over a large range of wavelengths and angles of incidence, due to suppressed reflection. The enhancement effect is particularly strong for a-Si:H NC arrays, which provide nearly perfect impedance matching between a-Si:H and air through a gradual reduction of the effective refractive index. More than 90% of light is absorbed at angles of incidence up to 60 degrees for a-Si:H NC arrays, which is significantly better than NW arrays (70%) and thin films (45%). In addition, the absorption of NC arrays is 88% at the band gap edge of a-Si:H, which is much higher than NW arrays (70%) and thin films (53%). Our experimental data agree very well with simulation. The a-Si:H nanocones function as both absorber and antireflection layers, which offer a promising approach to enhance the solar cell energy conversion efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications.

            This paper presents analysis of the optical absorption in silicon nanowire arrays that have potential applications in solar cells. The effects of wire diameter, length, and filling ratio on the absorptance of nanowire arrays are simulated. The study reveals that nanowire arrays with moderate filling ratio have much lower reflectance compared to thin films. In a high-frequency regime, nanowire arrays have higher absorptance than their thin film counterparts. In low-frequency regime, nanowire arrays absorb less but can be designed to approach that of the film by changing the filling ratio.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanodome solar cells with efficient light management and self-cleaning.

              Here for the first time, we demonstrate novel nanodome solar cells, which have periodic nanoscale modulation for all layers from the bottom substrate, through the active absorber to the top transparent contact. These devices combine many nanophotonic effects to both efficiently reduce reflection and enhance absorption over a broad spectral range. Nanodome solar cells with only a 280 nm thick hydrogenated amorphous silicon (a-Si:H) layer can absorb 94% of the light with wavelengths of 400-800 nm, significantly higher than the 65% absorption of flat film devices. Because of the nearly complete absorption, a very large short-circuit current of 17.5 mA/cm(2) is achieved in our nanodome devices. Excitingly, the light management effects remain efficient over a wide range of incident angles, favorable for real environments with significant diffuse sunlight. We demonstrate nanodome devices with a power efficiency of 5.9%, which is 25% higher than the flat film control. The nanodome structure is not in principle limited to any specific material system and its fabrication is compatible with most solar manufacturing; hence it opens up exciting opportunities for a variety of photovoltaic devices to further improve performance, reduce materials usage, and relieve elemental abundance limitations. Lastly, our nanodome devices when modified with hydrophobic molecules present a nearly superhydrophobic surface and thus enable self-cleaning solar cells.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                21 February 2012
                : 3
                : 692
                Affiliations
                [1 ]simpleCenter for Nanophotonics, FOM Institute AMOLF , Amsterdam, The Netherlands.
                [2 ] simplePhilips Research Laboratories , Eindhoven, The Netherlands.
                Author notes
                Article
                ncomms1691
                10.1038/ncomms1691
                3338005
                22353722
                40e9de93-778e-4021-8404-90c455817519
                Copyright © 2012, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 07 November 2011
                : 18 January 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article