Blog
About

27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Warming experiments underpredict plant phenological responses to climate change.

      Nature

      Uncertainty, Ecosystem, Flowers, growth & development, physiology, Global Warming, Models, Biological, Periodicity, Plant Development, Plant Leaves, Plant Physiological Phenomena, Plants, classification, Reproducibility of Results, Soil, chemistry, Temperature, Time Factors, Artifacts

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Fingerprints of global warming on wild animals and plants.

          Over the past 100 years, the global average temperature has increased by approximately 0.6 degrees C and is projected to continue to rise at a rapid rate. Although species have responded to climatic changes throughout their evolutionary history, a primary concern for wild species and their ecosystems is this rapid rate of change. We gathered information on species and global warming from 143 studies for our meta-analyses. These analyses reveal a consistent temperature-related shift, or 'fingerprint', in species ranging from molluscs to mammals and from grasses to trees. Indeed, more than 80% of the species that show changes are shifting in the direction expected on the basis of known physiological constraints of species. Consequently, the balance of evidence from these studies strongly suggests that a significant impact of global warming is already discernible in animal and plant populations. The synergism of rapid temperature rise and other stresses, in particular habitat destruction, could easily disrupt the connectedness among species and lead to a reformulation of species communities, reflecting differential changes in species, and to numerous extirpations and possibly extinctions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            European phenological response to climate change matches the warming pattern

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Novel climates, no-analog communities, and ecological surprises

                Bookmark

                Author and article information

                Journal
                22622576
                10.1038/nature11014

                Comments

                Comment on this article