43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Environmental heterogeneity plays a major role in invasion and coexistence dynamics. Habitat segregation between introduced species and their native competitors is usually described in terms of different physiological and behavioural abilities. However little attention has been paid to the effects of behaviour in habitat partitioning among invertebrates, partially because their behavioural repertoires, especially marine benthic taxa, are extremely limited. This study investigates the effect of gaping behaviour on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. These two species show partial habitat segregation on the south coast of South Africa, the lower and upper areas of the mussel zone are dominated by P. perna and M. galloprovincialis respectively, with overlap in the middle zone. During emergence, intertidal mussels will either keep the valves closed, minimizing water loss and undergoing anaerobic metabolism, or will periodically open the valves maintaining a more efficient aerobic metabolism but increasing the risk of desiccation.

          Results

          Our results show that, when air exposed, the two species adopt clearly different behaviours. M. galloprovincialis keeps the shell valves closed, while P. perna periodically gapes. Gaping behaviour increased water loss in the indigenous species, and consequently the risk of desiccation. The indigenous species expressed significantly higher levels of stress protein (Hsp70) than M. galloprovincialis under field conditions and suffered significantly higher mortality rates when exposed to air in the laboratory. In general, no intra-specific differences were observed in relation to intertidal height. The absence of gaping minimises water loss but exposes the invasive species to other stresses, probably related to anoxic respiration.

          Conclusions

          Gaping affects tolerance to desiccation, thus influencing the vertical zonation of the two species. Valve closure exposes the invasive species to higher stress and associated energy demands, but it minimizes water loss, allowing this species to dominate the upper mussel zone, where the gaping indigenous P. perna cannot survive. Thus even very simple behaviour can influence the outcome of interactions between indigenous and invasive species.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.

          Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Species Diversity and Invasion Resistance in a Marine Ecosystem.

              Theory predicts that systems that are more diverse should be more resistant to exotic species, but experimental tests are needed to verify this. In experimental communities of sessile marine invertebrates, increased species richness significantly decreased invasion success, apparently because species-rich communities more completely and efficiently used available space, the limiting resource in this system. Declining biodiversity thus facilitates invasion in this system, potentially accelerating the loss of biodiversity and the homogenization of the world's biota.
                Bookmark

                Author and article information

                Journal
                BMC Ecol
                BMC Ecology
                BioMed Central
                1472-6785
                2010
                12 July 2010
                : 10
                : 17
                Affiliations
                [1 ]CCMAR, CIMAR-Laboratorio Associado, Universidade do Algarve, Gambelas, 8005-139, Faro, Portugal
                [2 ]Department of Zoology & Entomology, Rhodes University, Grahamstown 6140, South Africa
                [3 ]Department of Biochemistry, Microbiology & Biotechnology, Rhodes University, Grahamstown 6140, South Africa
                [4 ]Department of Statistics, Rhodes University, Grahamstown 6140, South Africa
                Article
                1472-6785-10-17
                10.1186/1472-6785-10-17
                2912236
                20624310
                410243d7-00c1-40c1-9b20-9a44a2f52dc8
                Copyright ©2010 Nicastro et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 September 2009
                : 12 July 2010
                Categories
                Research Article

                Ecology
                Ecology

                Comments

                Comment on this article