39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Integrating Biomonitoring Exposure Data into the Risk Assessment Process: Phthalates [Diethyl Phthalate and Di(2-ethylhexyl) Phthalate] as a Case Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The probability of nonoccupational exposure to phthalates is high given their use in a vast range of consumables, including personal care products (e.g., perfumes, lotions, cosmetics), paints, industrial plastics, and certain medical devices and pharmaceuticals. Phthalates are of high interest because of their potential for human exposure and because animal toxicity studies suggest that some phthalates affect male reproductive development apparently via inhibition of androgen biosynthesis. In humans, phthalates are rapidly metabolized to their monoesters, which can be further transformed to oxidative products, conjugated, and eliminated. Phthalate metabolites have been used as biomarkers of exposure. Using urinary phthalate metabolite concentrations allows accurate assessments of human exposure because these concentrations represent an integrative measure of exposure to phthalates from multiple sources and routes. However, the health significance of this exposure is unknown. To link biomarker measurements to exposure, internal dose, or health outcome, additional information (e.g., toxicokinetics, inter- and intraindividual differences) is needed. We present a case study using diethyl phthalate and di(2-ethylhexyl) phthalate as examples to illustrate scientific approaches and their limitations, identify data gaps, and outline research needs for using biomonitoring data in the context of human health risk assessment, with an emphasis on exposure and dose. Although the vast and growing literature on phthalates research could not be covered comprehensively in this article, we made every attempt to include the most relevant publications as of the end of 2005.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

          We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phthalates and human health.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal Variability of Urinary Phthalate Metabolite Levels in Men of Reproductive Age

              Phthalates are a family of multifunctional chemicals widely used in personal care and other consumer products. The ubiquitous use of phthalates results in human exposure through multiple sources and routes, including dietary ingestion, dermal absorption, inhalation, and parenteral exposure from medical devices containing phthalates. We explored the temporal variability over 3 months in urinary phthalate metabolite levels among 11 men who collected up to nine urine samples each during this time period. Eight phthalate metabolites were measured by solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry. Statistical analyses were performed to determine the between- and within-subject variance apportionment, and the sensitivity and specificity of a single urine sample to classify a subject’s 3-month average exposure. Five of the eight phthalates were frequently detected. Monoethyl phthalate (MEP) was detected in 100% of samples; monobutyl phthalate, monobenzyl phthalate, mono-2-ethylhexyl phthalate (MEHP), and monomethyl phthalate were detected in > 90% of samples. Although we found both substantial day-to-day and month-to-month variability in each individual’s urinary phthalate metabolite levels, a single urine sample was moderately predictive of each subject’s exposure over 3 months. The sensitivities ranged from 0.56 to 0.74. Both the degree of between- and within-subject variance and the predictive ability of a single urine sample differed among phthalate metabolites. In particular, a single urine sample was most predictive for MEP and least predictive for MEHP. These results suggest that the most efficient exposure assessment strategy for a particular study may depend on the phthalates of interest.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                November 2006
                12 June 2006
                : 114
                : 11
                : 1783-1789
                Affiliations
                [1 ] Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
                [2 ] Toxicology Research Task Group, Phthalate Esters Panel, American Chemistry Council, Arlington, Virginia, USA
                Author notes
                Address correspondence to A.M. Calafat, Centers for Disease Control and Prevention, 4770 Buford Highway, Mailstop F17, Atlanta, GA 30341 USA. Telephone: (770) 488-7891. Fax: (770) 488-4371. E-mail: acalafat@ 123456cdc.gov

                R.H.M. is member of the American Chemistry Council, a trade association that represents chemical manufacturers, and contributed to this article in his capacity as Chairman of the Toxicology Research Task Group of the Phthalates Ester Panel. A.M.C. declares she has no competing financial interests.

                Article
                ehp0114-001783
                10.1289/ehp.9059
                1665433
                17107868
                41095e36-b5ad-4d14-8194-5e5da5ce7f81
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI
                History
                : 1 February 2006
                : 4 May 2006
                Categories
                Research
                Mini-Monograph

                Public health
                phthalate,exposure,urine,human,dep,biomonitoring,dehp,biomarkers
                Public health
                phthalate, exposure, urine, human, dep, biomonitoring, dehp, biomarkers

                Comments

                Comment on this article