4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Which Diet Has the Least Environmental Impact on Our Planet? A Systematic Review of Vegan, Vegetarian and Omnivorous Diets

      , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The food that we consume has a large impact on our environment. The impact varies significantly between different diets. The aim of this systematic review is to address the question: Which diet has the least environmental impact on our planet? A comparison of a vegan, vegetarian and omnivorous diets. This systematic review is based on 16 studies and 18 reviews. The included studies were selected by focusing directly on environmental impacts of human diets. Four electronic bibliographic databases, PubMed, Medline, Scopus and Web of Science were used to conduct a systematic literature search based on fixed inclusion and exclusion criteria. The durations of the studies ranged from 7 days to 27 years. Most were carried out in the US or Europe. Results from our review suggest that the vegan diet is the optimal diet for the environment because, out of all the compared diets, its production results in the lowest level of GHG emissions. Additionally, the reviewed studies indicate the possibility of achieving the same environmental impact as that of the vegan diet, without excluding the meat and dairy food groups, but rather, by reducing them substantially.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review

          Food production is a major driver of greenhouse gas (GHG) emissions, water and land use, and dietary risk factors are contributors to non-communicable diseases. Shifts in dietary patterns can therefore potentially provide benefits for both the environment and health. However, there is uncertainty about the magnitude of these impacts, and the dietary changes necessary to achieve them. We systematically review the evidence on changes in GHG emissions, land use, and water use, from shifting current dietary intakes to environmentally sustainable dietary patterns. We find 14 common sustainable dietary patterns across reviewed studies, with reductions as high as 70–80% of GHG emissions and land use, and 50% of water use (with medians of about 20–30% for these indicators across all studies) possible by adopting sustainable dietary patterns. Reductions in environmental footprints were generally proportional to the magnitude of animal-based food restriction. Dietary shifts also yielded modest benefits in all-cause mortality risk. Our review reveals that environmental and health benefits are possible by shifting current Western diets to a variety of more sustainable dietary patterns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture.

            Agricultural food production and agriculturally-related change in land use substantially contribute to greenhouse-gas emissions worldwide. Four-fifths of agricultural emissions arise from the livestock sector. Although livestock products are a source of some essential nutrients, they provide large amounts of saturated fat, which is a known risk factor for cardiovascular disease. We considered potential strategies for the agricultural sector to meet the target recommended by the UK Committee on Climate Change to reduce UK emissions from the concentrations recorded in 1990 by 80% by 2050, which would require a 50% reduction by 2030. With use of the UK as a case study, we identified that a combination of agricultural technological improvements and a 30% reduction in livestock production would be needed to meet this target; in the absence of good emissions data from Brazil, we assumed for illustrative purposes that the required reductions would be the same for our second case study in São Paulo city. We then used these data to model the potential benefits of reduced consumption of livestock products on the burden of ischaemic heart disease: disease burden would decrease by about 15% in the UK (equivalent to 2850 disability-adjusted life-years [DALYs] per million population in 1 year) and 16% in São Paulo city (equivalent to 2180 DALYs per million population in 1 year). Although likely to yield benefits to health, such a strategy will probably encounter cultural, political, and commercial resistance, and face technical challenges. Coordinated intersectoral action is needed across agricultural, nutritional, public health, and climate change communities worldwide to provide affordable, healthy, low-emission diets for all societies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: a critical review.

              Supplying adequate human nutrition within ecosystem carrying capacities is a key element in the global environmental sustainability challenge. Life cycle assessment (LCA) has been used effectively to evaluate the environmental impacts of food production value chains and to identify opportunities for targeted improvement strategies. Dietary choices and resulting consumption patterns are the drivers of production, however, and a consumption-oriented life cycle perspective is useful in understanding the environmental implications of diet choices. This review identifies 32 studies that use an LCA framework to evaluate the environmental impact of diets or meals. It highlights the state of the art, emerging methodological trends and current challenges and limitations to such diet-level LCA studies. A wide range of bases for analysis and comparison (i.e., functional units) have been employed in LCAs of foods and diet; we conceptually map appropriate functional unit choices to research aims and scope and argue for a need to move in the direction of a more sophisticated and comprehensive nutritional basis in order to link nutritional health and environmental objectives. Nutritional quality indices are reviewed as potential approaches, but refinement through ongoing collaborative research between environmental and nutritional sciences is necessary. Additional research needs include development of regionally specific life cycle inventory databases for food and agriculture and expansion of the scope of assessments beyond the current focus on greenhouse gas emissions.
                Bookmark

                Author and article information

                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                August 2019
                July 30 2019
                : 11
                : 15
                : 4110
                Article
                10.3390/su11154110
                410e0ee7-8aee-4b70-9c89-9e8bab23fd7f
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article