3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DetectingN-Nitrosamines in Drinking Water at Nanogram per Liter Levels Using Ammonia Positive Chemical Ionization

      , , ,
      Environmental Science & Technology
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Detection of N-nitrosamines in water supplies is an environmental and public health issue because many N-nitrosamines are classified as probable human carcinogens. Some analytical methods are inadequate for detecting N-nitrosodimethylamine (NDMA) at low ng/L concentrations in water due to poor extraction efficiencies and nonselective and nondistinctive GC/MS electron ionization techniques. Development of a selective, sensitive, and affordable benchtop analytical method for eight N-nitrosamines, at relevant drinking water concentrations was the primary objective of this project. A solid-phase extraction method using Ambersorb 572 and LiChrolut EN was developed in conjunction with GC/MS ammonia positive chemical ionization (PCI). Ammonia PCI shows excellent sensitivity and selectivity for N-nitrosamines, which were quantified using both isotope dilution/surrogate standard and internal standard procedures. Method detection limits for all investigated N-nitrosamines ranged from 0.4 to 1.6 ng/L. Applying our extraction method to authentic drinking water samples with dissolved organic carbon concentrations of 9 mg/L, we were able to detect N-nitrosodimethylamine (2-180 ng/L) as well as N-nitrosopyrrolidine (2-4 ng/L) and N-nitrosomorpholine (1 ng/L), two N-nitrosamines that have not been reported in drinking water to date. With high recoveries of standards and analytes, the described internal standard method offers a valuable new approach for investigating several N-nitroso compounds at ultratrace levels in drinking water.

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          September 2004
          September 2004
          : 38
          : 18
          : 4835-4841
          Article
          10.1021/es049846j
          15487793
          41185a3c-e135-4bba-9a49-662f11e29f64
          © 2004
          History

          Comments

          Comment on this article