36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.

          Related collections

          Most cited references331

          • Record: found
          • Abstract: not found
          • Article: not found

          Insulin-like growth factors and their binding proteins: biological actions.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects.

            In evolutionary terms, GH and intracellular STAT 5 signaling is a very old regulatory system. Whereas insulin dominates periprandially, GH may be viewed as the primary anabolic hormone during stress and fasting. GH exerts anabolic effects directly and through stimulation of IGF-I, insulin, and free fatty acids (FFA). When subjects are well nourished, the GH-induced stimulation of IGF-I and insulin is important for anabolic storage and growth of lean body mass (LBM), adipose tissue, and glycogen reserves. During fasting and other catabolic states, GH predominantly stimulates the release and oxidation of FFA, which leads to decreased glucose and protein oxidation and preservation of LBM and glycogen stores. The most prominent metabolic effect of GH is a marked increase in lipolysis and FFA levels. In the basal state, the effects of GH on protein metabolism are modest and include increased protein synthesis and decreased breakdown at the whole body level and in muscle together with decreased amino acid degradation/oxidation and decreased hepatic urea formation. During fasting and stress, the effects of GH on protein metabolism become more pronounced; lack of GH during fasting increases protein loss and urea production rates by approximately 50%, with a similar increase in muscle protein breakdown. GH is a counterregulatory hormone that antagonizes the hepatic and peripheral effects of insulin on glucose metabolism via mechanisms involving the concomitant increase in FFA flux and uptake. This ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours). Adult patients with GH deficiency are insulin resistant-probably related to increased adiposity, reduced LBM, and impaired physical performance-which temporarily worsens when GH treatment is initiated. Conversely, despite increased LBM and decreased fat mass, patients with acromegaly are consistently insulin resistant and become more sensitive after appropriate treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.

              Myostatin is a negative regulator of skeletal muscle size, previously shown to inhibit muscle cell differentiation. Myostatin requires both Smad2 and Smad3 downstream of the activin receptor II (ActRII)/activin receptor-like kinase (ALK) receptor complex. Other transforming growth factor-beta (TGF-beta)-like molecules can also block differentiation, including TGF-beta(1), growth differentiation factor 11 (GDF-11), activins, bone morphogenetic protein 2 (BMP-2) and BMP-7. Myostatin inhibits activation of the Akt/mammalian target of rapamycin (mTOR)/p70S6 protein synthesis pathway, which mediates both differentiation in myoblasts and hypertrophy in myotubes. Blockade of the Akt/mTOR pathway, using small interfering RNA to regulatory-associated protein of mTOR (RAPTOR), a component of TOR signaling complex 1 (TORC1), increases myostatin-induced phosphorylation of Smad2, establishing a myostatin signaling-amplification role for blockade of Akt. Blockade of RAPTOR also facilitates myostatin's inhibition of muscle differentiation. Inhibition of TORC2, via rapamycin-insensitive companion of mTOR (RICTOR), is sufficient to inhibit differentiation on its own. Furthermore, myostatin decreases the diameter of postdifferentiated myotubes. However, rather than causing upregulation of the E3 ubiquitin ligases muscle RING-finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), previously shown to mediate skeletal muscle atrophy, myostatin decreases expression of these atrophy markers in differentiated myotubes, as well as other genes normally upregulated during differentiation. These findings demonstrate that myostatin signaling acts by blocking genes induced during differentiation, even in a myotube, as opposed to activating the distinct "atrophy program." In vivo, inhibition of myostatin increases muscle creatine kinase activity, coincident with an increase in muscle size, demonstrating that this in vitro differentiation measure is also upregulated in vivo.
                Bookmark

                Author and article information

                Journal
                Clin Med Insights Endocrinol Diabetes
                Clin Med Insights Endocrinol Diabetes
                Clinical Medicine Insights: Endocrinology and Diabetes
                Clinical Medicine Insights. Endocrinology and Diabetes
                Libertas Academica
                1179-5514
                2016
                12 October 2016
                : 9
                : 47-71
                Affiliations
                [1 ]Scientific Direction, Medical Center Foltra, Teo, Spain.
                [2 ]Research and Development, Medical Center Foltra, 15886-Teo, Spain.
                Author notes
                Article
                cmed-9-2016-047
                10.4137/CMED.S38201
                5063841
                27773998
                4131abf9-8535-4d2b-8c9d-d78acb606d4e
                © 2016 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

                History
                : 25 July 2016
                : 12 September 2016
                : 19 September 2016
                Categories
                Review

                Endocrinology & Diabetes
                growth hormone,growth,nervous system,gonads,liver,cardiovascular system
                Endocrinology & Diabetes
                growth hormone, growth, nervous system, gonads, liver, cardiovascular system

                Comments

                Comment on this article