51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanosize Titanium Dioxide Stimulates Reactive Oxygen Species in Brain Microglia and Damages Neurons in Vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Titanium dioxide is a widely used nanomaterial whose photo-reactivity suggests that it could damage biological targets (e.g., brain) through oxidative stress (OS).

          Objectives

          Brain cultures of immortalized mouse microglia (BV2), rat dopaminergic (DA) neurons (N27), and primary cultures of embryonic rat striatum, were exposed to Degussa P25, a commercially available TiO 2 nanomaterial. Physical properties of P25 were measured under conditions that paralleled biological measures.

          Findings

          P25 rapidly aggregated in physiological buffer (800–1,900 nm; 25°C) and exposure media (~ 330 nm; 37°C), and maintained a negative zeta potential in both buffer (–12.2 ± 1.6 mV) and media (–9.1 ± 1.2 mV). BV2 microglia exposed to P25 (2.5–120 ppm) responded with an immediate and prolonged release of reactive oxygen species (ROS). Hoechst nuclear stain was reduced after 24-hr (≥100 ppm) and 48-hr (≥2.5 ppm) exposure. Microarray analysis on P25-exposed BV2 microglia indicated up-regulation of inflammatory, apoptotic, and cell cycling pathways and down-regulation of energy metabolism. P25 (2.5–120 ppm) stimulated increases of intracellular ATP and caspase 3/7 activity in isolated N27 neurons (24–48 hr) but did not produce cytotoxicity after 72-hr exposure. Primary cultures of rat striatum exposed to P25 (5 ppm) showed a reduction of immunohistochemically stained neurons and microscopic evidence of neuronal apoptosis after 6-hr exposure. These findings indicate that P25 stimulates ROS in BV2 microglia and is nontoxic to isolated N27 neurons. However, P25 rapidly damages neurons at low concentrations in complex brain cultures, plausibly though microglial generated ROS.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Role of target geometry in phagocytosis.

          Phagocytosis is a principal component of the body's innate immunity in which macrophages internalize targets in an actin-dependent manner. Targets vary widely in shape and size and include particles such as pathogens and senescent cells. Despite considerable progress in understanding this complicated process, the role of target geometry in phagocytosis has remained elusive. Previous studies on phagocytosis have been performed using spherical targets, thereby overlooking the role of particle shape. Using polystyrene particles of various sizes and shapes, we studied phagocytosis by alveolar macrophages. We report a surprising finding that particle shape, not size, plays a dominant role in phagocytosis. All shapes were capable of initiating phagocytosis in at least one orientation. However, the local particle shape, measured by tangent angles, at the point of initial contact dictates whether macrophages initiate phagocytosis or simply spread on particles. The local shape determines the complexity of the actin structure that must be created to initiate phagocytosis and allow the membrane to move over the particle. Failure to create the required actin structure results in simple spreading and not internalization. Particle size primarily impacts the completion of phagocytosis in cases where particle volume exceeds the cell volume.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm.

            Nanomaterial properties differ from those bulk materials of the same composition, allowing them to execute novel activities. A possible downside of these capabilities is harmful interactions with biological systems, with the potential to generate toxicity. An approach to assess the safety of nanomaterials is urgently required. We compared the cellular effects of ambient ultrafine particles with manufactured titanium dioxide (TiO2), carbon black, fullerol, and polystyrene (PS) nanoparticles (NPs). The study was conducted in a phagocytic cell line (RAW 264.7) that is representative of a lung target for NPs. Physicochemical characterization of the NPs showed a dramatic change in their state of aggregation, dispersibility, and charge during transfer from a buffered aqueous solution to cell culture medium. Particles differed with respect to cellular uptake, subcellular localization, and ability to catalyze the production of reactive oxygen species (ROS) under biotic and abiotic conditions. Spontaneous ROS production was compared by using an ROS quencher (furfuryl alcohol) as well as an NADPH peroxidase bioelectrode platform. Among the particles tested, ambient ultrafine particles (UFPs) and cationic PS nanospheres were capable of inducing cellular ROS production, GSH depletion, and toxic oxidative stress. This toxicity involves mitochondrial injury through increased calcium uptake and structural organellar damage. Although active under abiotic conditions, TiO2 and fullerol did not induce toxic oxidative stress. While increased TNF-alpha production could be seen to accompany UFP-induced oxidant injury, cationic PS nanospheres induced mitochondrial damage and cell death without inflammation. In summary, we demonstrate that ROS generation and oxidative stress are a valid test paradigm to compare NP toxicity. Although not all materials have electronic configurations or surface properties to allow spontaneous ROS generation, particle interactions with cellular components are capable of generating oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration.

              In order to evaluate the toxicity of TiO(2) particles, the acute toxicity of nano-sized TiO(2) particles (25 and 80nm) on adult mice was investigated compared with fine TiO(2) particles (155nm). Due to the low toxicity, a fixed large dose of 5g/kg body weight of TiO(2) suspensions was administrated by a single oral gavage according to the OECD procedure. In 2 weeks, TiO(2) particles showed no obvious acute toxicity. However, the female mice showed high coefficients of liver in the nano-sized (25 and 80nm) groups. The changes of serum biochemical parameters (ALT/AST, LDH) and pathology (hydropic degeneration around the central vein and the spotty necrosis of hepatocytes) of liver indicated that the hepatic injury was induced after exposure to mass different-sized TiO(2) particles. In addition, the nephrotoxicity like increased BUN level and pathology change of kidneys was also observed in the experimental groups. The significant change of serum LDH and alpha-HBDH in 25 and 80nm groups showed the myocardial damage compared with the control group. However, there are no abnormal pathology changes in the heart, lung, testicle (ovary), and spleen tissues. Biodistribution experiment showed that TiO(2) mainly retained in the liver, spleen, kidneys, and lung tissues, which indicated that TiO(2) particles could be transported to other tissues and organs after uptake by gastrointestinal tract.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                November 2007
                3 August 2007
                : 115
                : 11
                : 1631-1637
                Affiliations
                [1 ] Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
                [2 ] Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
                [3 ] Constella Inc., Research Triangle Park, North Carolina, USA
                [4 ] National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
                Author notes
                Address correspondence to B. Veronesi, U.S. EPA, NHEERL, NTD B105-06, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-5780. Fax: (919) 541-4849. E-mail: veronesi.bellina@ 123456epa.gov

                The authors declare they have no competing financial interests.

                Article
                ehp0115-001631
                10.1289/ehp.10216
                2072833
                18007996
                4139de50-1996-4fe5-97a8-f4939d9cc6e8
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 2 March 2007
                : 3 August 2007
                Categories
                Research

                Public health
                neurotoxicity,p25,environmental nanotoxicity,oxidative stress,titanium dioxide,bv2
                Public health
                neurotoxicity, p25, environmental nanotoxicity, oxidative stress, titanium dioxide, bv2

                Comments

                Comment on this article