15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effect of climate change on the duration of avian breeding seasons: a meta-analysis

      ,
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d1631911e155">Many bird species are advancing the timing of their egg-laying in response to a warming climate. Little is known, however, of whether this advancement affects the respective length of the breeding seasons. A meta-analysis of 65 long-term studies of 54 species from the Northern Hemisphere has revealed that within the last 45 years an average population has lengthened the season by 1.4 days per decade, which was independent from changes in mean laying dates. Multi-brooded birds have prolonged their seasons by 4 days per decade, while single-brooded have shortened by 2 days. Changes in season lengths covaried with local climate changes: warming was correlated with prolonged seasons in multi-brooded species, but not in single-brooders. This might be a result of higher ecological flexibility of multi-brooded birds, whereas single brooders may have problems with synchronizing their reproduction with the peak of food resources. Sedentary species and short-distance migrants prolonged their breeding seasons more than long-distance migrants, which probably cannot track conditions at their breeding grounds. We conclude that as long as climate warming continues without major changes in ecological conditions, multi-brooded or sedentary species will probably increase their reproductive output, while the opposite effect may occur in single-brooded or migratory birds. </p>

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Influences of species, latitudes and methodologies on estimates of phenological response to global warming

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Keeping up with a warming world; assessing the rate of adaptation to climate change.

            The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase without loss of biodiversity. The rate of adaptation will primarily be set by the rate of microevolution since (i) phenotypic plasticity alone is not sufficient as reaction norms will no longer be adaptive and hence microevolution on the reaction norm is needed, (ii) learning will be favourable to the individual but cannot be passed on to the next generations, (iii) maternal effects may play a role but, as with other forms of phenotypic plasticity, the response of offspring to the maternal cues will no longer be adaptive in a changing environment, and (iv) adaptation via immigration of individuals with genotypes adapted to warmer environments also involves microevolution as these genotypes are better adapted in terms of temperature, but not in terms of, for instance, photoperiod.Long-term studies on wild populations with individually known animals play an essential role in detecting and understanding the temporal trends in life-history traits, and to estimate the heritability of, and selection pressures on, life-history traits. However, additional measurements on other trophic levels and on the mechanisms underlying phenotypic plasticity are needed to predict the rate of microevolution, especially under changing conditions. Using this knowledge on heritability of, and selection on, life-history traits, in combination with climate scenarios, we will be able to predict the rate of adaptation for different climate scenarios. The final step is to use ecoevolutionary dynamical models to make the link to population viability and from there to biodiversity loss for those scenarios where the rate of adaptation is insufficient.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Warmer springs lead to mistimed reproduction in great tits (Parus major)

                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                November 22 2017
                November 29 2017
                November 22 2017
                November 29 2017
                : 284
                : 1867
                : 20171710
                Article
                10.1098/rspb.2017.1710
                5719171
                29167360
                413b545b-4925-4f48-9e82-f8b5a910788c
                © 2017

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article