12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient Medium Access Arbitration Among Interfering WBANs Using Latin Rectangles

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The overlap of transmission ranges among multiple Wireless Body Area Networks (WBANs) is referred to as coexistence. The interference is most likely to affect the communication links and degrade the performance when sensors of different WBANs simultaneously transmit using the same channel. In this paper, we propose a distributed approach that adapts to the size of the network, i.e., the number of coexisting WBANs, and to the density of sensors forming each individual WBAN in order to minimize the impact of co-channel interference through dynamic channel hopping based on Latin rectangles. Furthermore, the proposed approach opts to reduce the overhead resulting from channel hopping, and lowers the transmission delay, and saves the power resource at both sensor- and WBAN-levels. Specifically, we propose two schemes for channel allocation and medium access scheduling to diminish the probability of inter-WBAN interference. The first scheme, namely, Distributed Interference Avoidance using Latin rectangles (DAIL), assigns channel and time-slot combination that reduces the probability of medium access collision. DAIL suits crowded areas, e.g., high density of coexisting WBANs, and involves overhead due to frequent channel hopping at the WBAN coordinator and sensors. The second scheme, namely, CHIM, takes advantage of the relatively lower density of collocated WBANs to save power by hopping among channels only when interference is detected at the level of the individual nodes. We present an analytical model that derives the collision probability and network throughput. The performance of DAIL and CHIM is further validated through simulations.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Wireless Body Area Networks: A Survey

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A survey on wireless body area networks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy efficient medium access protocol for wireless medical body area sensor networks.

              This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.
                Bookmark

                Author and article information

                Journal
                2017-01-27
                Article
                1701.08059
                4150289c-34da-4e45-9c6a-6111e2e94559

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                2017 Ad Hoc Networks - ELSEVIER
                cs.NI

                Networking & Internet architecture
                Networking & Internet architecture

                Comments

                Comment on this article