5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of omega-3 fatty acid diet on prostate cancer progression and cholesterol efflux in tumor-associated macrophages—dependence on GPR120

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Preclinical and clinical translational research supports the role of an ω-3 fatty acid diet for prostate cancer prevention and treatment. The anti-prostate cancer effects of an ω-3 diet require a functional host g-protein coupled receptor 120 (GPR120) but the underlying effects on the tumor microenvironment and host immune system are yet to be elucidated.

          Methods

          Friend leukemia virus B (FVB) mice received bone marrow from green fluorescent protein (GFP) labeled GPR120 wild-type (WT) or knockout (KO) mice followed by implanting Myc-driven mouse prostate cancer (MycCap) allografts and feeding an ω-3 or ω-6 diet. Tumor associated immune cells were characterized by flow cytometry, and CD206+ tumor infiltrating M2-like macrophages were isolated for gene expression studies. MycCap prostate cancer cell conditioned medium (CM) was used to stimulate murine macrophage cells (RAW264.7) and bone marrow-derived (BMD) macrophages to study the effects of docosahexanoic acid (DHA, fish-derived ω-3 fatty acid) on M2 macrophage function and cholesterol metabolism.

          Results

          The bone marrow transplantation study showed that an ω-3 as compared to an ω-6 diet inhibited MycCaP allograft tumor growth only in mice receiving GPR120 WT but not GPR120 KO bone marrow. In the ω-3 group, GPR120 WT BMD M2-like macrophages infiltrating the tumor were significantly reduced in number and gene expression of cholesterol transporters Abca1, Abca6, and Abcg1. RAW264.7 murine macrophages and BMDMs exposed to MycCaP cell CM had increased gene expression of cholesterol transporters, depleted cholesterol levels, and were converted to the M2 phenotype. These effects were inhibited by DHA through the GPR120 receptor.

          Conclusion

          Host bone marrow cells with functional GPR120 are essential for the anticancer effects of dietary ω-3 fatty acids, and a key target of the ω-3 diet are the M2-like CD206+ macrophages. Our preclinical findings provide rationale for clinical trials evaluating ω-3 fatty acids as a potential therapy for prostate cancer through inhibition of GPR120 functional M2-like macrophages.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects.

          Omega-3 fatty acids (omega-3 FAs), DHA and EPA, exert anti-inflammatory effects, but the mechanisms are poorly understood. Here, we show that the G protein-coupled receptor 120 (GPR120) functions as an omega-3 FA receptor/sensor. Stimulation of GPR120 with omega-3 FAs or a chemical agonist causes broad anti-inflammatory effects in monocytic RAW 264.7 cells and in primary intraperitoneal macrophages. All of these effects are abrogated by GPR120 knockdown. Since chronic macrophage-mediated tissue inflammation is a key mechanism for insulin resistance in obesity, we fed obese WT and GPR120 knockout mice a high-fat diet with or without omega-3 FA supplementation. The omega-3 FA treatment inhibited inflammation and enhanced systemic insulin sensitivity in WT mice, but was without effect in GPR120 knockout mice. In conclusion, GPR120 is a functional omega-3 FA receptor/sensor and mediates potent insulin sensitizing and antidiabetic effects in vivo by repressing macrophage-induced tissue inflammation. Copyright 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Targeting macrophages in cancer immunotherapy

            Immunotherapy is regarded as the most promising treatment for cancers. Various cancer immunotherapies, including adoptive cellular immunotherapy, tumor vaccines, antibodies, immune checkpoint inhibitors, and small-molecule inhibitors, have achieved certain successes. In this review, we summarize the role of macrophages in current immunotherapies and the advantages of targeting macrophages. To better understand and make better use of this type of cell, their development and differentiation characteristics, categories, typical markers, and functions were collated at the beginning of the review. Therapeutic strategies based on or combined with macrophages have the potential to improve the treatment efficacy of cancer therapies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression

                Bookmark

                Author and article information

                Contributors
                Journal
                Prostate Cancer and Prostatic Diseases
                Prostate Cancer Prostatic Dis
                Springer Science and Business Media LLC
                1365-7852
                1476-5608
                October 23 2023
                Article
                10.1038/s41391-023-00745-4
                37872251
                415c736c-012f-4664-b9bf-21d7514a62bb
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article