49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance of Ultra-Deep Pyrosequencing in Analysis of HIV-1 pol Gene Variation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Ultra-deep pyrosequencing (UDPS) has been used to detect minority variants within HIV-1 populations. Some aspects of the quality and reproducibility of UDPS have been previously evaluated, but comprehensive studies are still needed.

          Principal Finding

          In this study the UDPS technology (FLX platform) was evaluated by analyzing a 120 base pair fragment of the HIV-1 pol gene from plasma samples from two patients and artificial mixtures of molecular clones. UDPS was performed using an optimized experimental protocol and an in-house data cleaning strategy. Nine samples and mixtures were analyzed and the average number of reads per sample was 19,404 (range 8,858–26,846). The two patient plasma samples were analyzed twice and quantification of viral variants was found to be highly repeatable for variants representing >0.27% of the virus population, whereas some variants representing 0.11–0.27% were detected in only one of the two UDPS runs. Bland-Altman analysis showed that a repeated measurement would have a 95% likelihood to lie approximately within ±0.5 log 10 of the initial estimate. A similar level of agreement was observed for variant frequency estimates in forward vs. reverse sequencing direction, but here the agreement was higher for common variants than for rare variants. UDPS following PCR amplification with alternative primers indicated that some variants may be incorrectly quantified due to primer-related selective amplification. Finally, the in vitro recombination rate during PCR was evaluated using artificial mixtures of clones and was found to be low. The most abundant in vitro recombinant represented 0.25% of all UDPS reads.

          Conclusion

          This study demonstrates that this UDPS protocol results in low experimental noise and high repeatability, which is relevant for future research and clinical use of the UDPS technology. The low rate of in vitro recombination suggests that this UDPS system can be used to study genetic variants and mutational linkage.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deciphering human immunodeficiency virus type 1 transmission and early envelope diversification by single-genome amplification and sequencing.

            Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 x 10(-5). Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 x 10(-5) substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bias and artifacts in multitemplate polymerase chain reactions (PCR).

              T Kanagawa (2002)
              Polymerase chain reaction (PCR) is often used for the amplification of a mixture of homologous genes. PCR bias and artifact formation can occur in multitemplate PCR, and provide incorrect information on the abundance and diversity of genes. PCR bias and artifact formation occur at a higher rate during the last few cycles of the reaction, and therefore can be avoided by stopping the PCR earlier.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                25 July 2011
                : 6
                : 7
                : e22741
                Affiliations
                [1 ]Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
                [2 ]Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
                University of Sao Paulo, Brazil
                Author notes

                Conceived and designed the experiments: MM CH JA. Performed the experiments: MM CH. Analyzed the data: MM CH JJ. Wrote the paper: MM CH JA. Developed bioinformatic software: JJ.

                Article
                PONE-D-11-01646
                10.1371/journal.pone.0022741
                3143174
                21799940
                415cda6a-e0bd-4a41-a3c3-c390fd3a7b95
                Mild et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 January 2011
                : 5 July 2011
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Genetics
                Genetic Screens
                Genomics
                Genome Sequencing
                Medicine
                Infectious Diseases
                Viral Diseases
                HIV

                Uncategorized
                Uncategorized

                Comments

                Comment on this article