Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Renal Tubular Cells Cultured from Genetically Modified Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The culture of renal tubular cells from genetically modified animals opens the opportunity of biochemical, cell biology and physiological studies under strictly controlled conditions. Either primary cultures or cell lines can be used. Through two examples of primary cultures of proximal tubular cells obtained from knock-out mice, important information about the function of proteins were obtained. Mice lacking vimentin, an intermediate filament normally reexpressed in tubular cells during regeneration and culture, have a normal tubular function under basal conditions. Proximal cells grown from these animals exhibit a defect in sodium-glucose cotransport activity, most likely related to alterations in the dimer/monomer ratio of the transporter in the apical membranes. These alterations may be important in terms of tubular function during the recovery phase following acute tubular necrosis. The situation is strikingly different with regard to mice lacking HNF-1, a transactivator involved in the transcription of multiple genes. These animals suffer from severe Fanconi syndrome related to decreased expression of proximal transporters including isoforms of sodium-glucose (SGLT2) and sodium-phosphate (NPT1) cotransporters. Whereas transport defects are observed in isolated tubules, they are no longer apparent in cultured proximal cells because the expression of these isoforms is suppressed under culture conditions. These observations illustrate the interest and limits of the in vitro models for studying renal function in transgenic animals.

          Related collections

          Most cited references 4

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities.

          Npt2 encodes a renal-specific, brush-border membrane Na+-phosphate (Pi) cotransporter that is expressed in the proximal tubule where the bulk of filtered Pi is reabsorbed. Mice deficient in the Npt2 gene were generated by targeted mutagenesis to define the role of Npt2 in the overall maintenance of Pi homeostasis, determine its impact on skeletal development, and clarify its relationship to autosomal disorders of renal Pi reabsorption in humans. Homozygous mutants (Npt2(-/-)) exhibit increased urinary Pi excretion, hypophosphatemia, an appropriate elevation in the serum concentration of 1,25-dihydroxyvitamin D with attendant hypercalcemia, hypercalciuria and decreased serum parathyroid hormone levels, and increased serum alkaline phosphatase activity. These biochemical features are typical of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a Mendelian disorder of renal Pi reabsorption. However, unlike HHRH patients, Npt2(-/-) mice do not have rickets or osteomalacia. At weaning, Npt2(-/-) mice have poorly developed trabecular bone and retarded secondary ossification, but, with increasing age, there is a dramatic reversal and eventual overcompensation of the skeletal phenotype. Our findings demonstrate that Npt2 is a major regulator of Pi homeostasis and necessary for normal skeletal development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The kidney androgen-regulated protein promoter confers renal proximal tubule cell-specific and highly androgen-responsive expression on the human angiotensinogen gene in transgenic mice.

            Transgenic mice were generated containing a 1542-base pair fragment of the kidney androgen-regulated protein (KAP) promoter fused to the human angiotensinogen (HAGT) gene with the goal of specifically targeting inducible expression of renin-angiotensin system components to the kidney. High level expression of both KAP-HAGT and endogenous KAP mRNA was evident in the kidney of male mice from two independent transgenic lines. Renal expression of the transgene in female mice was undetectable under basal conditions but could be strongly induced by administration of testosterone. Testosterone treatment did not cause a transcriptional induction in any other tissues examined. However, an analysis of six androgen target tissues in males revealed that the transgene was expressed in epididymis. No other extra-renal expression of the transgene was detected. In situ hybridization demonstrated that expression of HAGT (and KAP) mRNA in males and testosterone-treated females was restricted to proximal tubule epithelial cells in the renal cortex. Although there was no detectable human angiotensinogen protein in plasma, it was evident in the urine, consistent with a pathway of synthesis in proximal tubule cells and release into the tubular lumen. These results demonstrate that 1542 base pairs of the KAP promoter is sufficient to drive expression of a heterologous reporter gene in a tissue-specific, cell-specific, and androgen-regulated fashion in transgenic mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Transgenic Models in Renal Tubular Physiology

              Animal transgenesis has proven to be useful for physiological as well as physiopathological studies. Besides the classical approach based on the random integration of a DNA construct in the mouse genome, gene targeting can be achieved using totipotent embryonic stem (ES) cells for targeted transgenesis. Transgenic mice are then derived from the transgenic ES cells. This allows the introduction of null mutations in the genome (so-called knock-out) or the control of the transgene expression by the endogenous regulatory sequences of the gene of interest (so-called knock-in). Development of these transgenic animals leads to a better understanding of the cellular function of many genes or to the generation of animal models for human diseases. The purpose of this short review is to describe animal models in renal tubular physiopathology. Recent progresses will allow the generation of animal models with conditional expression of the transgene of interest or with a conditional gene mutation. This permits spatial and temporal control of the expression of the transgene or of the mutation. This should allow the generation of models suitable for physiological analysis or closer to disease state.
                Bookmark

                Author and article information

                Journal
                EXN
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                978-3-8055-6977-4
                978-3-318-00513-4
                1660-2129
                1999
                December 1999
                28 October 1999
                : 7
                : 5-6
                : 407-412
                Affiliations
                INSERM U 426 and Department of Physiology, Faculté de Médecine Xavier-Bichat, Université Denis-Diderot, Paris, France
                Article
                20638 Exp Nephrol 1999;7:407–412
                10.1159/000020638
                10559638
                © 1999 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, References: 20, Pages: 6
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/20638
                Categories
                Paper

                Comments

                Comment on this article