3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distribution of Functional CD4 and CD8 T cell Subsets in Blood and Rectal Mucosal Tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A better understanding of the distribution and functional capacity of CD4 T helper (Th) and CD8 T cytotoxic (Tc) cell subsets in the rectal mucosa (RM), a major site for HIV acquisition and replication, in adults is needed. In this study, we compared the distribution of Th and Tc cell subsets between blood and RM compartments in 62 HIV negative men, focusing primarily on IL-17-producing CD4 and CD8 T cells due to their importance in establishing and maintaining mucosal defenses, and examined associations between the frequencies of Th17 and Tc17 cell subsets and the availability of highly HIV-susceptible target cells in the RM. The RM exhibited a distinct immune cell composition comprised of higher frequencies of Th2, Th17, and Tc17 cells compared to the peripheral blood. The majority of Tc17 cells in RM were quadruple-cytokine producers (IL-17A +, IFN-γ +, TNF-α +, and IL4 +), whereas most Th17 cells in blood and RM were single IL-17A producers or dual-cytokine producers (IL-17A +TNF-α +). In a separate cohort of 21 HIV positive men, we observed similar tissue distributions of Th and Tc cell subsets, although Tc17 cell frequencies in both blood and tissues were very low. Higher frequencies of multi-cytokine-producing Th17 and Tc17 cells in RM of HIV negative men positively correlated with increased mucosal HIV target cells, suggesting a need to further characterize the effector functions of these cells and their role in HIV acquisition and pathogenesis.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense

          Bacterial pneumonia is an increasing complication of HIV infection and inversely correlates with the CD4+ lymphocyte count. Interleukin (IL)-17 is a cytokine produced principally by CD4+ T cells, which induces granulopoiesis via granulocyte colony-stimulating factor (G-CSF) production and induces CXC chemokines. We hypothesized that IL-17 receptor (IL-17R) signaling is critical for G-CSF and CXC chemokine production and lung host defenses. To test this, we used a model of Klebsiella pneumoniae lung infection in mice genetically deficient in IL-17R or in mice overexpressing a soluble IL-17R. IL-17R–deficient mice were exquisitely sensitive to intranasal K. pneumoniae with 100% mortality after 48 h compared with only 40% mortality in controls. IL-17R knockout (KO) mice displayed a significant delay in neutrophil recruitment into the alveolar space, and had greater dissemination of K. pneumoniae compared with control mice. This defect was associated with a significant reduction in steady-state levels of G-CSF and macrophage inflammatory protein (MIP)-2 mRNA and protein in the lung in response to the K. pneumoniae challenge in IL-17R KO mice. Thus, IL-17R signaling is critical for optimal production of G-CSF and MIP-2 and local control of pulmonary K. pneumoniae infection. These data support impaired IL-17R signaling as a potential mechanism by which deficiency of CD4 lymphocytes predisposes to bacterial pneumonia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Setting the stage: host invasion by HIV.

            For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Plasticity of Human CD4 T Cell Subsets

              Human beings are exposed to a variety of different pathogens, which induce tailored immune responses and consequently generate highly diverse populations of pathogen-specific T cells. CD4+ T cells have a central role in adaptive immunity, since they provide essential help for both cytotoxic T cell- and antibody-mediated responses. In addition, CD4+ regulatory T cells are required to maintain self-tolerance and to inhibit immune responses that could damage the host. Initially, two subsets of CD4+ helper T cells were identified that secrete characteristic effector cytokines and mediate responses against different types of pathogens, i.e., IFN-γ secreting Th1 cells that fight intracellular pathogens, and IL-4 producing Th2 cells that target extracellular parasites. It is now well established that this dichotomy is insufficient to describe the complexity of CD4+ T cell differentiation, and in particular the human CD4 compartment contains a myriad of T cell subsets with characteristic capacities to produce cytokines and to home to involved tissues. Moreover, it has become increasingly clear that these T cell subsets are not all terminally differentiated cells, but that the majority is plastic and that in particular central memory T cells can acquire different properties and functions in secondary immune responses. In addition, there is compelling evidence that helper T cells can acquire regulatory functions upon chronic stimulation in inflamed tissues. The plasticity of antigen-experienced human T cell subsets is highly relevant for translational medicine, since it opens new perspectives for immune-modulatory therapies for chronic infections, autoimmune diseases, and cancer.
                Bookmark

                Author and article information

                Contributors
                colleen.kelley@emory.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 May 2019
                6 May 2019
                2019
                : 9
                : 6951
                Affiliations
                [1 ]ISNI 0000 0001 0941 6502, GRID grid.189967.8, The Hope Clinic of the Emory Vaccine Research Center, Division of Infectious Diseases, Department of Medicine, , Emory University School of Medicine, ; Decatur, GA 30030 United States
                [2 ]Present Address: Pfizer Pharmaceuticals, Cambridge, MA United States
                [3 ]ISNI 0000 0001 0941 6502, GRID grid.189967.8, Yerkes National Primate Research Center, , Emory Vaccine Center, ; Atlanta, GA 30329 United States
                [4 ]ISNI 0000 0001 0941 6502, GRID grid.189967.8, Department of Biostatistics and Bioinformatics, Rollins School of Public Health, , Emory University, ; Atlanta, GA 30322 United States
                Author information
                http://orcid.org/0000-0002-6309-6797
                http://orcid.org/0000-0001-5611-0119
                Article
                43311
                10.1038/s41598-019-43311-6
                6502862
                31061442
                41891280-21b8-4bb2-a3ad-53adb2cef8fb
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 November 2018
                : 29 March 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000060, U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID);
                Award ID: AI128799
                Award ID: AI088575
                Award ID: AI088575
                Award ID: U19 AI109633
                Award ID: P01 AI088575
                Award ID: P30AI050409
                Award ID: K23 AI108335
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100009633, U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD);
                Award ID: HD092033
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000062, U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases);
                Award ID: T32DK108735
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000057, U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS);
                Award ID: R01GM116065
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100006108, U.S. Department of Health & Human Services | NIH | National Center for Advancing Translational Sciences (NCATS);
                Award ID: UL1TR000454
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                mucosal immunology,hiv infections
                Uncategorized
                mucosal immunology, hiv infections

                Comments

                Comment on this article