8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of Allosteric Targets in the Discovery of Safer Drugs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The need for drugs with fewer side effects cannot be overemphasized. Today, most drugs modify the actions of enzymes, receptors, transporters and other molecules by directly binding to their active (orthosteric) sites. However, orthosteric site configuration is similar in several proteins performing related functions and this leads to a lower specificity of a drug for the desired protein. Consequently, such drugs may have adverse side effects. A new basis of drug discovery is emerging based on the binding of the drug molecules to sites away (allosteric) from the orthosteric sites. It is possible to find allosteric sites which are unique and hence more specific as targets for drug discovery. Of many available examples, two are highlighted here. The first is caloxins - a new class of highly specific inhibitors of plasma membrane Ca 2+ pumps. The second concerns the modulation of receptors for the neurotransmitter acetylcholine, which binds to 12 types of receptors. Exploitation of allosteric sites has led to the discovery of drugs which can selectively modulate the activation of only 1 (M1 muscarinic) out of the 12 different types of acetylcholine receptors. These drugs are being tested for schizophrenia treatment. It is anticipated that the drug discovery exploiting allosteric sites will lead to more effective therapeutic agents with fewer side effects.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders.

          Despite G-protein-coupled receptors (GPCRs) being among the most fruitful targets for marketed drugs, intense discovery efforts for several GPCR subtypes have failed to deliver selective drug candidates. Historically, drug discovery programmes for GPCR ligands have been dominated by efforts to develop agonists and antagonists that act at orthosteric sites for endogenous ligands. However, in recent years, there have been tremendous advances in the discovery of novel ligands for GPCRs that act at allosteric sites to regulate receptor function. These compounds provide high selectivity, novel modes of efficacy and may lead to novel therapeutic agents for the treatment of multiple psychiatric and neurological human disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

            Acetylcholine (ACh), the first neurotransmitter to be identified 1 , exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate. 2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. 5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors.

                Bookmark

                Author and article information

                Journal
                Med Princ Pract
                Med Princ Pract
                MPP
                Medical Principles and Practice
                S. Karger AG (Allschwilerstrasse 10, P.O. Box · Postfach · Case postale, CH–4009, Basel, Switzerland · Schweiz · Suisse, Phone: +41 61 306 11 11, Fax: +41 61 306 12 34, karger@karger.ch )
                1011-7571
                1423-0151
                September 2013
                23 May 2013
                23 May 2013
                : 22
                : 5
                : 418-426
                Affiliations
                Departments of Medicine and Biology, McMaster University, Hamilton, Ont., Canada
                Author notes
                *Dr. Ashok Kumar Grover, Department of Medicine, HSC 4N41, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5 (Canada), E-Mail groverak@ 123456mcmaster.ca
                Article
                mpp-0022-0418
                10.1159/000350417
                5586781
                23711993
                4199c81e-07ea-4613-b2e0-bdb2d908bc1d
                Copyright © 2013 by S. Karger AG, Basel

                This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.

                History
                : 26 December 2012
                : 4 March 2013
                Page count
                Figures: 5, References: 65, Pages: 9
                Categories
                Review

                adverse effects,allosterism,drug specificity,drug targets,orthosteric sites,pharmacology,side effects

                Comments

                Comment on this article